斜拉索-摩擦型阻尼器系统的阻尼特性分析

王慧萍1,孙利民2,胡晓伦1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (11) : 213-217.

PDF(1821 KB)
PDF(1821 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (11) : 213-217.
论文

斜拉索-摩擦型阻尼器系统的阻尼特性分析

  • 王慧萍1,孙利民2,胡晓伦1
作者信息 +

Damping of Stay Cable with a Friction Damper

  • WANG Hui-ping 1, SUN Li-min 2,HU Xiao-lun 1
Author information +
文章历史 +

摘要

研究了采用非线性摩擦型阻尼器的斜拉索振动控制的阻尼特性。通过数值模拟斜拉索-摩擦型阻尼器系统的自由振动,分析了斜拉索位移时程曲线的衰减特征,系统模态阻尼比的变化规律以及拉索振动形状的变化。通过对拉索模态阻尼比的参数分析,得到了摩擦型阻尼器参数和拉索附加阻尼关系的通用设计曲线。研究了拉索-摩擦型阻尼器系统最大附加阻尼的取值,结果表明斜拉索的最大模态阻尼比依振动初始条件等参数影响分布在一个范围而非定值,其下限值仍高于采用线性粘滞阻尼器时所获得的最大模态阻尼比。最后将数值模拟结果与已有实索试验数据进行了对比,二者吻合良好。

Abstract

Damping of stay cable with nonlinear friction damper was studied. The free vibration of the cable with a friction damper was numerically simulated by finite element method. The free vibration attenuation characteristics of cable, the variation of modal damping ratio of cable, and vibration shape of cable were studied. A universal curve was proposed that relates the modal damping ratio of a cable with a friction damper when the effect of various parameters on damping was considered. The value of a maximum available additional damping was analyzed. The results show that the maximum modal damping ratio of cable with a friction damper is not a fixed value, but a range, and the lowest value of which is larger than that of an optimal passive linear viscous damper. The results of numerical simulation were preferably verified by the experiments.
 

关键词

斜拉索 / 摩擦型阻尼器 / 振动控制 / 模态阻尼比 / 参数分析

Key words

stayed cable / friction damper / vibration control / additional modal damping ratio / parametric analysis

引用本文

导出引用
王慧萍1,孙利民2,胡晓伦1. 斜拉索-摩擦型阻尼器系统的阻尼特性分析[J]. 振动与冲击, 2016, 35(11): 213-217
WANG Hui-ping 1, SUN Li-min 2,HU Xiao-lun 1. Damping of Stay Cable with a Friction Damper[J]. Journal of Vibration and Shock, 2016, 35(11): 213-217

参考文献

[1] L. M. Sun,C. Shi,H. J. Zhou., et al. A Full-scale Experiment on Vibration Mitigation of Stay Cable[C/CD]. Proceedings of IABSE Conference on metropolitan habitats and infrastructure. IABSE Symposium Shanghai 2004.
[2] Pacheco B M, Fujino Y, Sulekh A. Estimation curve for modal damping in stay cables with viscous damper [J].Journal of Structural Engineering, 1993, 119(6):1961-1979.
[3] Krenk S. Vibrations of a taut cable with an external damper [J].Journal of Applied Mechanics, 2000, 67(4): 772-776.
[4] Main J A, Jones N P. Free vibrations of taut cable with attached damper. I: Linear viscous damper [J].Journal of Engineering Mechanics, 2002, 128(10):1062-1071.
[5] 汪志昊,陈政清.被动电磁阻尼器对斜拉索振动控制研究[J].振动与冲击,2014,33(9):94-99.
WANG Zhi-hao,CHEN ZHENG-qing.Cable vibration control with a passive electromagnetic damper[J].Journal of Vibration and Shock,2014,33(9):94-99.
[6] 余德举. 斜拉索多模态振动控制研究[D].上海:同济大学,2009.
YU Deju. Multi-modal vibration mitigation of stay cables[D]. Shanghai: Tongji University, 2009. (in Chinese)
[7] Main J A, Jones N P. Free vibrations of taut cable with attached damper. II: Nonlinear Damper [J].Journal of Engineering Mechanics, 2002, 128(10):1072-1081.
[8] Krenk S, Høgsberg J R. Damping of cables by a transverse force[J]. Journal of Engineering Mechanics, 2005, 131(4):340-348.
[9] 周海俊,孙利民,时晨.摩擦型阻尼器的斜拉索减振试验研究[J].同济大学学报:自然科学版,2006,34(7):864-868.
    ZHOU Haijun, SUN Limin, SHI Cheng. A full-scale experimental study on cable vibration mitigation with friction damper[J]. Journal of Tongji University: Natural Science, 2006,34(7):864-868.(in Chinese)

PDF(1821 KB)

662

Accesses

0

Citation

Detail

段落导航
相关文章

/