从次谐波级联角度,利用谐波平衡法与跟踪延拓算法得到了高维强非线性隔振系统各级次谐波的幅频特性曲线,分析了次谐波的稳定性,研究了两条分岔道路,得到了典型的倍周期分岔值,以此估计了混沌参数区域,与数值计算结果吻合较好。
Abstract
Cascades of subharmonics and their stability for high-dimensional strongly nonlinear vibration isolation system were studied by combining the harmonic balance method and the predictor–corrector method. The amplitude-frequency curves of every level subharmonic were plotted. Two routes of bifurcation were analyzed and the boundaries of the period-doubling bifurcations were obtained through the stability analysis, and then, the parameter regions of chaos were estimated. The results are almost the same as those obtained by numerical simulations.
关键词
非线性 /
次谐波 /
分岔 /
混沌
{{custom_keyword}} /
Key words
nonlinear /
subharmonic /
bifurcation /
chaos
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] YOON Jongyun, SINGH Rajendra. Examination of super-harmonics in a multi-degree of freedom nonlinear vibration isolation system: Refined models and comparison with measurements [J]. Mechanical Systems and Signal Processing, 2014, 48(1-2): 368–387.
[2] PENG Z K, MENG G, LANG Z Q, et al. Study of the effects of cubic nonlinear damping on vibration isolations using Harmonic Balance Method [J]. International Journal of Non-Linear Mechanics, 2012, 47(10): 1073-1080.
[3] 黄志伟,何雪松,陈志刚,等. 非线性隔振系统振动特性分析[J]. 动力学与控制学报, 2013, 11(3): 252-257.
HUANG Zhiwei, HE Xuesong CHEN Zhigang, et al. Research on the vibration characteristics of nonlinear isolation system[J]. Journal of Dynamics and Control, 2013, 11(3):252-256.
[4] 孟宗,付立元,宋明厚. 一类非线性相对转动系统的组合谐波分岔行为研究[J].物理学报, 2013,62(5):054501(1-10).
MENG Zong, FU Liyuan, SONG Minghou. Bifurcation of a kind of nonlinear-relative rotational system with combined harmonic excitation[J]. Acta Phys. Sin., 2013, 62(5):054501(1-10).
[5] 魏静,孙伟,褚衍顺,等. 斜齿轮系统分岔与混沌特性及其参数影响研究[J]. 哈尔滨工程大学学报, 2013, 34(10):1301-1309.
WEI Jing,SUN Wei,CHU Yanshun, et al. Bifurcation and chaotic characteristics of helical gear system and parameter influences[J]. Journal of Harbin Engineering University, 2013, 34(10):1301-1309.
[6] LI T Y,YORKE J A.Period three implies chaos [J].Amer.Math.Monthly,1975,82:985–992.
[7] 闫振华,王国强,苏丽达,等.非线性被动隔振器刚度特性研究[J].振动与冲击,2013,32(19):139-143.
YAN Zhenhua, WANG Guoqiang, SU Lida, et al. Stiffness characteristics of a non-linear passive vibration isolator[J].Journal of Vibration and Shock, 2013, 32(19): 139-143.
[8] 张敬,徐道临,李盈利,等. 多源激励下双层隔振浮筏系统的线谱混沌化[J]. 物理学报,2014,63(18):18050501-18050511
ZHANG Jing, XU Daolin, Li Yingli, et al. Line spectrum chaotification of a double-layer vibration isolation floating raft system under multi-source excitation[J]. Acta Phys. Sin. , 2014,63(18): 18050501-18050511
[9] LUKOMSKY V P,GANDZHA I S.Cascades of subharmonic stationary states in strongly non–linear driven planar systems [J].Journal of Sound and Vibration,2004,275:351–373.
[10] YU X,ZHU S J,LIU S Y,Bifurcation and chaos in multi-degree-of-freedom nonlinear vibration isolation system[J].Chaos,Solitons and Fractals,2008,38:1498-1504.
[11] BLAIR K B,KROUSGRILL C M,FARRIS T N.Harmonic balance and continuation techniques in the dynamic analysis of Duffing’s equation [J].Journal of Sound and Vibration,1997,202:717–731.
[12] 杨忠华.非线性分歧:理论和计算[M].北京:科学出版社,2007.
YANG Zhonghua. Nonlinear bifurcation: theory and computation [M]. Beijing: Science Press, 2007.
[13] KAPITANIAK T.Chaos for engineers–theory,applications,and control [J].Berlin:Springer–Verlag,2000.
[14] GREBOGI C,OTT E,YORKE J A.Chaotic attractors in crisis [J].Phys.Rev.Lett.,1982,48:507–1510.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}