基于差分人工蜂群算法的梁结构裂纹识别

丁政豪 吕中荣 刘济科

振动与冲击 ›› 2016, Vol. 35 ›› Issue (11) : 74-78.

PDF(1955 KB)
PDF(1955 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (11) : 74-78.
论文

基于差分人工蜂群算法的梁结构裂纹识别

  • 丁政豪 吕中荣  刘济科
作者信息 +

Identification of structural cracks based on differential artificial bee colony Algorithm

  • Ding Zhenghao LU Zhong-rong LIU Ji-ke
Author information +
文章历史 +

摘要

采用差分人工蜂群算法对裂纹梁结构进行损伤识别。人工蜂群算法是一种元启发式算法,具有结构简单,方便执行但易于陷入局部最优的特点。为改善这一不足,在引领蜂阶段引入差分进化机制增强算法的全局搜索能力,在观察蜂阶段引入新的搜索公式来加强算法的局部搜索能力。另一方面,通过利用完全开口裂纹梁的前几阶固有频率建立损伤识别的目标函数,然后利用改进方法优化目标函数得到识别结果。数值算例和实验验证的结果表明,在仅知道前几阶固有频率的情况下,差分人工蜂群算法能够有效地识别损伤参数,优于原始人工蜂群算法、遗传算法和粒子群算法并且对测量噪声不敏感。

Abstract

A differential artificial bee colony algorithm(D-ABC) is proposed for crack identification in beam structures. ABC is a heuristic algorithm and swarm technique with simple structure, which is easy to implement but it may trap in local minimum. In the D-ABC, the differential evolution(DE) mechanism is introduced to employed bee phase, and a new formula is used to simulate onlooker bee’s behavior to improve algorithm’s global search ability and convergence rate. A discrete open crack is used for vibration analysis of the cracked beam and only the changes in the first few natural frequencies are utilized to establish the objective function of the optimization problem for crack identification. A numerical simulations and an experimental work are studied to illustrate the efficiency of the proposed method. Studies show that the present techniques can produce more accurate damage identification results, comparing with original ABC, GA and PSO algorithm, even with a few noise contaminated measurements.

关键词

人工蜂群算法 / 差分进化机制 / 开口裂纹 / 固有频率 / 梁结构

Key words

ABC algorithm / DE mechanism / cracks / natural frequencies / beam structures

引用本文

导出引用
丁政豪 吕中荣 刘济科. 基于差分人工蜂群算法的梁结构裂纹识别[J]. 振动与冲击, 2016, 35(11): 74-78
Ding Zhenghao LU Zhong-rong LIU Ji-ke. Identification of structural cracks based on differential artificial bee colony Algorithm[J]. Journal of Vibration and Shock, 2016, 35(11): 74-78

参考文献

[1] Kang Fei, Li Jun-jie, Xu Qing. Damage detection based on improved particle swarm optimization using vibration data [J]. Applied Soft Computing, 2012, 12: 2329-2335.
[2] Cheng SM, Swamidas ASJ, Wu XJ, Wallace W . Vibration response of a beam with a breathing crack[J]. Journal of Sound and Vibration 1999, 225: 201-208.
[3] Sinha JK, Friswell MI, Edwards S. Simplified models for the location of cracks in beam structures using measured vibration data [J]. Journal of Sound and Vibration,2002,251(1): 13-38.
[4] Shen MHH, Taylor JE, Identification problem for vibrating cracked beams [J]. Journal of Sound and Vibration, 1991,150(3): 457-484.
[5] Mustafa Sonmez. Artificial Bee Colony algorithm for optimization of truss structures[J]. Applied Soft
   Computing, 2011, 234: 2406-2418. 
[6] W. Gao, S. Liu, L. Huang, A global best artificial bee colony algorithm for global optimization [J]. Journal of Computational and Applied Mathematics,2012, 236: 2741-2753.
[7] Storn R, Price K. Differential Evolution---A simple and Efficient Heuristic for Global Optimization over Continuous Space. Journal of Global Optimization 1997, 11(4): 341-359.
[8] D.Karaboga, B.Korkemi, A quick artificial bee colony(qABC) algorithm and its performance on optimization problems [J]. Applied Soft Computing,2014, 23:227-238.
[9] Moha,SC, Yadav Amit and Maiti Dipak Kumar. A comparative study on crack identification of structures from the changes in natural frequencies using GA and PSO [J]. Engineering Computations  2014 31(7): 1514-1531.
[10] Khiem NT, Toan LK. A novel method for crack detection in beam-like structures by measurements of natural frequencies. Journal of Sound and Vibration 2014, 333:4084-4103.

PDF(1955 KB)

Accesses

Citation

Detail

段落导航
相关文章

/