依据实际深孔钻削刀具系统的结构布局及其振动特征,设计了一种新型刀具系统制振器的结构布局形式。以制振器理想输出阻尼力和内磁感应强度达到饱和为设计目标,给出了磁流变制振器结构的优化设计方法及其具体结构参数。运用有限元法,分析了新型制振器的磁场分布特征及其输出阻尼特征。以此为基础,通过深孔钻削实验研究,获得了不同励磁电流和切削参数条件下刀具振动的抑制效果,验证了本文所提出的新型磁流变制振构型的可行性和有效性。
Abstract
Considering the structure and vibration characteristics of drilling tools system in deep-hole drilling, a novel structural layout of the vibration suppression device is proposed. With the goal of obtaining a desired damping force output and controlling the magnetic saturation strength, the structure optimization of novel magnetorheological vibration suppression device and its specific structure parameters are given. Combining with the finite element method, the magnetic field distribution of the proposed vibration suppression device and its damping characteristics output are analyzed. Based on mentioned above, the vibration control experiments of the tool system in deep-hole drilling is carried out so as to investigate the relevant experimental results of tool vibration control under the conditions of different excitation currents and cutting parameters, and simultaneously, it is can be seen from the experimental results that the new model of magnetorheological damping configuration proposed in this paper can satisfy the demand of practical deep hole machining process.
关键词
深孔钻削 /
刀具振动 /
制振器设计 /
动态特性
{{custom_keyword}} /
Key words
Deep-hole drilling /
Drilling tool vibration /
Vibration suppression device design /
Dynamic characteristics
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李言,孔令飞.振动切削深孔加工初始偏差对孔直线度误差的影响[J].机械工程学报,2012,48(13):167-172.
Li Yan, Kong Ling-fei. Influence of Initial Deviation in Vibrating Deep Hole Drilling on Hole Straightness Error [J]. Journal of mechanical engineering, 2012, 48(13): 167-173.
[2] Yao Z. H., Mei D. Q., Chen Z. C.. Chatter suppression by parametric excitation: Model and experiments [J]. Journal of Sound and Vibration, 2011, 330: 2995~3005.
[3] Quintana G., Ciurana J.. Chatter in machining processes: A review [J]. International Journal of Machine Tools and Manufacture, 2011, 51(5): 363~376.
[4] Mehrabadi I. M., Nouri M., Madoliat. R.. Investigating chatter vibration in deep drilling, including process damping and the gyroscopic effect [J]. International Journal of Machine Tools and Manufacture, 2009, 49: 939-946.
[5] Roukema J. C., Altintas Y.. Generalized modeling of drilling vibrations. Part I: Time domain model of drilling kinematics, dynamics and hole formation [J]. International Journal of Machine Tools and Manufacture, 2007, 47: 1455~1473.
[6] Roukema J. C., Altintas Y.. Generalized modeling of drilling vibrations. Part II: Chatter stability in frequency domain [J]. International Journal of Machine Tools and Manufacture, 2007, 47: 1474~1485.
[7] Ahmadi K., Altintas Y.. Stability of lateral, torsional and axial vibrations in drilling [J]. International Journal of Machine Tools and Manufacture, 2013, 68: 63~74.
[8] P. Forte, M. Paterno, E. Rustighi. A magnetorheological fluid damper for rotor applications[J]. international Journal of Rotating Machinery, 2004, 10(3):175~182.
[9] A.H. Ghasemi, A.R. Ohadi, M.H. Ghaffari Saadat. Vibration control of a rotor-bearing system with smart bearings unsing magnetorheologic fluid [C]. ICSV15, 15th international congress on sound and vibration, July 2008, Daejeon, Korea.
[10] J. Huang, J. Q. Zhang, Y. Yang, Y. Q. Wei. Analysis and design of a cylindrical magneto-rheological fluid brake [J]. Journal of Materials Processing Technology, 2002, 129:559~562.
[11] 王修勇,孙洪鑫,陈政清. 旋转剪切式磁流变液阻尼器设计及力学模型[J]. 振动与冲击,2010,29(10):77-81.
WANG Xiu-yong, SUN Hong-xin, CHEN Zhen-qing. Design and mechanical model of Rotary-mode Shear MR damper [J]. Journal of Vibration and Shock, 2010, 29(10): 77-81.
[12] Lord Company. MRF-132DG Magneto-Rheological Fluid [R]. Lord Technical Data, 2008.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}