单自由度模型被广泛应用于规则中、低墩梁桥的抗震分析和设计,而高墩梁桥由于墩身高阶振型的影响,有必要发展多自由度甚至分布参数体系的简化分析模型和方法。本文基于分布参数欧拉梁理论对单墩-质点体系进行解析推导,分析了体系动力特性和振型质量分布的控制因素和规律,从纯解析角度更为严格的证明梁-墩质量比是决定体系水平向振型质量参与系数的主要因素,解释了已有数值分析结果给出的统计规律,纯解析给出比已有数值拟合公式精度更高、适用范围更广的分析公式,探讨了高阶振型的影响,最后给出手算评估等效单自由度模型有效性的建议公式。
Abstract
The single degree of freedom model was widely applied in anti-seismic analysis and design for regular girder bridges with medium-length or short-length piers. While for girder bridges with tall piers, due to the obvious influence of higher-order modes, simplified model and method with multiple degrees of freedom or even with distributed parameters, are still required to be developed. In this paper, based on the theory of Euler beam with distributed parameters, analytical derivation is presented for the Single Column and Mass system. The dynamical characteristics and modal mass distributions, as well as their control factors and properties, are studied. It is proved analytically and more strictly that, the girder-pier mass ratio plays the dominant role to determine the horizontal modal mass participation, and thus interpretation for the previous conclusion based on statistical and numerical analysis is presented. Purely analytical formulas, which show higher accuracy and better applicability than the previous numerical fitting formulas, are also given. The influence of higher-order vibration mode is analyzed and discussed. Finally, the manual calculation formula, for efficiency assessment of the single degree of freedom model, is also proposed.
关键词
高墩 /
单墩-质点体系 /
振型质量参与系数 /
解析推导
{{custom_keyword}} /
Key words
Tall pier /
Single column and mass system /
Modal mass participation /
Analytical derivation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 中华人民共和国行业推荐性标准: 公路桥梁抗震设计细则(JTG/T B02-01-2008) [S]. 北京: 人民交通出版社, 2008.
[2] Caltrans Seismic Design Criteria, Version 1.3 [S]. California, U.S.A., 2004.
[3] American Association of State Highway and Transportation Official. Guide specifications for LRFD seismic bridge design [S]. Washington DC, USA: AASHTO, 2007.
[4] EN 1998-2-2005 Eurocode 8: Design of Structures for Earthquake Resistance, Part2: Bridges [S]. Eurocodes committee for Standardization, 2005.
[5] 道路橋示方書•同解说[S]. V耐震设计编. 日本道路协会, 1996.
[6] 宗周红, 夏坚, 徐绰然. 桥梁高墩抗震研究现状及展望[J]. 东南大学学报(自然科学版), 2013, 43(2): 445-452.
Zong Z., Xia J., Xu C. Seismic study of high piers of large-span bridges: an overview and research development [J]. Journal of Southeast University (Natural Science Edition), 2013, 43(2): 445-452.
[7] 杨昀, 周列茅, 周勇军. 弯桥与高墩[M]. 北京: 人民交通出版社, 2011.
Yang J., Zhou L., Zhou Y. Curved Bridge and Tall Pier [M]. Beijing: China Communications Press, 2011.
[8] 李建中, 宋晓东, 范立础. 桥梁高墩位移延性能力的探讨[J]. 地震工程与工程振动, 2005, 25(1): 43-48.
Li J., Song X., Fan L. Investigation for displacement ductility capacity of tall piers [J]. Earthquake Engineering and Engineering Vibration, 2005, 25(1): 43-48.
[9] 李茜, 王克海, 韦韩. 高墩梁桥地震响应分析[J]. 地震工程与工程振动, 2006, 26(3): 74-76.
Li Q., Wang K., Wei W. Seismic response analysis of girder bridge [J]. Earthquake Engineering and Engineering Vibration, 2006, 26(3): 74-76.
[10] 梁智垚, 李建中. 桥梁高墩合理计算模型探讨[J]. 地震工程与工程振动, 2007, 27(2): 91-98.
Liang Z., Li J. Investigation on rational analytical modal of tall bridge pier [J]. Earthquake Engineering and Engineering Vibration, 2007, 27(2): 91-98.
[11] Wang J., Ou Y., Chang K., Lee G. Large scale seismic tests of tall concrete bridge columns with precast segmental construction [J]. Earthquake Engineering & Structural Dynamics, 2008, 37(12): 1449-1465.
[12] Francisco J. M., Fernando G. V., Antonio H., Julián A. Design of tall bridge piers by ant colony optimization [J]. Engineering Structures, 2011, 33(8): 2320-2329.
[13] 卢皓, 管仲国, 李建中. 高阶振型对高墩梁桥抗震性能的影响及其识别[J]. 振动与冲击, 2012, 31 (17): 81-85.
Lu H., Guan Z., Li J. Effect of higher modal shapes on aseismic performance of a bridge with high piers and its identification [J]. Journal of Vibration and Shock, 2012, 31 (17): 81-85.
[14] 彭凯, 李建中, 范立础. 高墩梁桥考虑墩身高阶振动的水平向主导振型[J]. 振动与冲击, 2008, 27(7): 63-68.
Peng K., Li J., Fang L. Horizontal predominant vibraiton modes of high-pier beam bridge in wiew of higher-order vibration of pier shafts [J]. Journal of Vibration and Shock, 2008, 27(7): 63-68.
[15] 克拉夫 R.W., 彭津 J. 结构动力学[M]. 王光远, 译. 北京: 科学出版社, 1981.
Clough R.W., Penzien J. Dynamics of Structure (Chinese Edition) [M]. Translated by Wang Guangyuan. Beijing: Science Press, 1981
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}