基于反射系数建模的层状CFRP超声共振特性研究

陈越超1,杨辰龙1,周晓军1,郑慧峰2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (12) : 147-154.

PDF(2938 KB)
PDF(2938 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (12) : 147-154.
论文

基于反射系数建模的层状CFRP超声共振特性研究

  • 陈越超1 ,杨辰龙1,周晓军1,郑慧峰2
作者信息 +

Research of layered CFRP ultrasonic resonance characteristics based on reflection coefficient modeling

  • CHEN Yue-chao1   YANG Chen-long1   ZHOU Xiao-jun1  ZHENG Hui-feng2
Author information +
文章历史 +

摘要

对层状碳纤维复合材料(CFRP)超声反射系数进行建模并研究超声波在CFRP内的共振特性。首先建立了声波在多层介质中传播时的反射系数频响模型。在此基础上对多层CFRP反射系数频域响应进行数值计算并对反射系数频响随CFRP层数的变化特征进行分析。结果表明使用中心频率接近层状CFRP固有共振频率的超声探头进行检测时,超声波在层状CFRP中将产生共振现象。在CFRP层数较少时,共振结构噪声中会夹杂其他频率的信号成分。随着CFRP层数增加,共振结构噪声在信号共振区域的占比将会提高。当CFRP层数增加到一定数量后,共振结构噪声将只在离超声波入射表面较近的区域出现。随着超声波远离入射表面,共振结构噪声将逐渐消失。最后对薄板型CFRP和厚截面CFRP的实验信号进行分析,得到的实验结果和数值计算结果相一致。

Abstract

The ultrasonic reflection coefficient model for layered carbon fiber reinforced polymer (CFRP) was built and the characteristics of ultrasonic resonance in CFRP were studied. First the reflection coefficient frequency response model of acoustic wave propagation in multilayered medium was established. Then the frequency response of multilayered CFRP reflection coefficient was numerically calculated based on the model and the influence of CFRP layer number to frequency response characteristics was analyzed. The results are as follows. When the ultrasonic probe whose center frequency is close to the resonant frequency of layered CFRP is used to test the CFRP, the ultrasonic wave resonance phenomenon will appear. If the layer number of CFRP is small, the resonance structure noise will be mixed with signal components of other frequencies. With the increase of CFRP layer number, the proportion of resonance structure noise in signal resonance region will increase. When the CFRP layer increases to a certain number, the resonance structure noise will only appear in the region close to the ultrasonic incidence surface. As the ultrasonic spread away from the incidence surface, the resonant structure signal will gradually disappear. At last the experimental signals of thin plate CFRP and thick section CFRP were analyzed respectively. The experimental results were the same as the numerical calculation results.

关键词

碳纤维复合材料 / 超声脉冲反射信号 / 反射系数 / 频域响应 / 共振

Key words

carbon fiber reinforced polymer / ultrasonic pulse-echo signal / reflection coefficient / frequency response / resonance

引用本文

导出引用
陈越超1,杨辰龙1,周晓军1,郑慧峰2. 基于反射系数建模的层状CFRP超声共振特性研究[J]. 振动与冲击, 2016, 35(12): 147-154
CHEN Yue-chao1 YANG Chen-long1 ZHOU Xiao-jun1 ZHENG Hui-feng2. Research of layered CFRP ultrasonic resonance characteristics based on reflection coefficient modeling[J]. Journal of Vibration and Shock, 2016, 35(12): 147-154

参考文献

[1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12.
DU Shan-yi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12.
[2] 刘亚雄,欧阳国恩,张华新,等.透光复合材料、碳纤维复合材料及其应用[M]. 北京:化学工业出版社,2006 :242-244.
[3] Judd N C W, Wright W W. Voids and their effects on the mechanical properties of composites-an appraisal [J]. SAMPLE Journal, 1978, 14: 10-14.
[4] Hagstrand P O, Bonjour F, Manson J A E. The influence of void content on the structural flexural performance of unidirectional glass fibre reinforced polypropylene composites [J]. Composites: Part A, 2005, 36(5):705-714.
[5] Birt E A, Smith R A. A review of NDE methods for porosity measurement in fiber-reinforced polymer composites [J]. Insight, Non-Destructive Testing and Condition Monitoring, 2004, 46(11): 681-686.
[6] Armitage P R, Wright C D. Design, development and testing of multi-functional non-linear ultrasonic instrumentation for the detection of defects and damage in CFRP materials and structures [J]. Composites Science and Technology, 2013, 87(18):149-156.
[7] Kim K B, Hsu D K, Daniel J B. Estimation of porosity content of composite materials by applying discrete wavelet transform to ultrasonic backscattered signal[J]. NDT&E International, 2013, 56(10): 10-16.
[8] Karabutov A A, Podymova N B. Nondestructive porosity assessment of CFRP composites with spectral analysis of backscattered laser-induced ultrasonic pulses[J]. Journal of Nondestructive Evaluation, 2013, 32, 315–324.
[9] Gengembre N, Calmon P, Petillon O, et al. Prediction of ultrasonic fields into composite multi-layered structures: homogenization approach for the direct field and statistical approach for the inner reflections [C]. Review of Progress in Quantitative Nondestructive Evaluation, 2003: 957-964.
[10] Dominguez N, Mascarot B. Ultrasonic non-destructive inspection of localized porosity in composite materials [C]. 9th European Conference on Non-Destructive Testing, 2006. 1-8.
[11] Dominguez N. Modeling of ultrasonic propagation in complex media-Application to non-destructive control and characteriza-
tion the porosity in laminated composite materials[D]. Toulouse: University Toulouse, 2006.
[12] Smith R A, Nelson L J. Automated Analysis and Advanced Defect Characterization from Ultrasonic Scans of Composites. Journal of The British Institute of NDT, 2009, 51(2): 82-87.
[13] Martinsson J, Hagglund F, Carlson J E. Complete post-Separa-
tion of overlapping ultrasonic signals by combining hard and soft modeling[J]. Ultrasonics, 2008, 48(5): 427-443.
[14] Hagglund F, Martinsson J, Carlson J E, et al. Model-based characterization of thin layers using pulse-echo ultrasound[C]. Proceedings of the International Congress on Ultrasonics, 2007. 1-4.
[15] Scott W R, Gordon P F. Ultrasonic spectrum analysis for nondestructive testing of layered composite materials[J]. Journal of the Acoustical Society of America, 1977, 62(1): 108-116.
[16] 李钊. 碳纤维复合材料孔隙率超声检测与评价技术研究[D]. 杭州:浙江大学,2014,36-46.
LI Zhao. Research on ultrasonic detection and evaluation technique for porosity of carbon fiber composites[D], Zhejiang: Zhejiang University, 2014: 36-46.
[17] Martin B G. Ultrasonic attenuation due to voids in fiber-reinforced plastics [J]. Non-destructive Testing International, 1976, 9(5): 242-246.
 
 

PDF(2938 KB)

715

Accesses

0

Citation

Detail

段落导航
相关文章

/