独立分量分析方法在信号分析中具有振源分离的特点,但由于机械设备早期故障信号具有强背景噪声及振源复杂等特点,独立分量分析方法对于单通道强背景噪声信号中的早期故障检测也无法取得满意效果。因此提出相空间对独立分量方法对其进行振源分离及重构,获得早期故障成分较为集中的重构信号,进而提出了峭度贡献系数来提取重构信号的早期故障特征信息。在对于某挤压机变速箱轴承的早期故障信号应用中,此方法在强背景噪声下成功的提取了早期故障的特征信息,确定了早期故障发生的部件。上述实验证明,相空间独立分量分析及峭度贡献系数方法在早期故障检测方面提供了一个可行的研究方向。
Abstract
Independent component analysis method has the characteristics of the vibration source separation in the analysis of signal, But because coefficient fault signal of mechanical equipment has the characteristics of strong background noise and complex vibration source, independent component analysis method can't obtain satisfied effect on which applied to extract coefficient fault from single channel strong background noise signal. Therefore, The phase space of independent component method is proposed to separate and reconstruct the incipient fault signal, the contribution coefficient of kurtosis is proposed to extract the incipient fault characteristic information from reconstructed signal. This method is applied into the incipient fault signal of bearing in extruder's gearbox, the incipient fault character information is extracted successfully and the faulty component is identified accurately. The experiments show that the phase space of independent component analysis and the contribution coefficient of kurtosis method in the put forward a feasible research direction for incipient fault detection.
关键词
相空间独立分量分析 /
峭度 /
峭度贡献系数 /
早期故障
{{custom_keyword}} /
Key words
phase space of independent component analysis /
kurtosis /
contribution coefficient of kurtosis /
incipient fault
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] D. Blanco , B. Mulgrew , D.P. Ruiz,etc. Independent component analysis in signals with multiplicative noise using fourth-order statistics[J].signal processing. 2007,87: 1917-1932.
[2] 宋友,柳重堪,李其汉. 含噪振动信号中早期碰摩的故障检测研究[J]. 航空学报,2003, 24(1):32-35.
SONG You, LIU Zhong-kan, LI Qi-han. Early Rub-Impact Fault Detection in Noise Circumstances[J]. Acta Aeronautica Et Astronautica Sinica, 2003, 24(1):32-35.
[3]P. Gruber , K. Stadlthanner ,M.Bohm , et al.. Denoising using local projective subspace methods[J]. Neurocomputing. 2006,69: 485-497.
[4] Donna Giri, U. Rajendra Acharya, Roshan Joy Martis, et al. Automated diagnosis of Coronary Artery Disease affected patients using LDA, PCA, ICA and Discrete Wavelet Transform[J]. Knowledge-Based Systems, 2013,37:274-282.
[5]Logan David,Mthew Joseph. Using the correlation dimension for vibration fault diagnosis of rolling element bearings - I. Basic concepts [J]. Mechanical Systems &Signal Processing, 1996, 5: 241-250.
[6]Takens F. Dynamical system and turbulence, lecture notes in mathematics[M]. Berlin, Germany: Springer, 1981.
[7] 吴小涛, 杨锰, 袁晓辉,龚廷恺. 基于峭度准则EEMD及改进形态滤波方法的轴承故障诊断[J]. 振动与冲击,2015,34(2):38-44
WU Xiao-tao, YANG meng, YUAN xiao-hui, et al. Bearing fault diagnosis using EEMD and improved morphological filtering method based on kurtosis criterion[J], Journal of vibration and shock, ,2015,34(2):38-44.
[8]Sheen Y T. A complex filter for vibration signal demodulation in bearing defect diagnosis [J]. Journal of Sound and Vibration, 2004, 276(1): 105-119.
[9]Fraser A M and Swinney H L. Independent coordinates for strange attractors from mutual information[J]. Phys. Rev. A 1986,33 (11):34-40.
[10]Liangyue Cao. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physical D: Nonlinear Phenomena, 1997, 110 (1-2):43-50.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}