针对超声珩磨加工过程中空化泡的振动预测及现有理论模型的局限性,将空化泡泡内气体的膨胀视为等温过程,压缩视为绝热过程,修正了超声珩磨下单、双空化泡的动力学模型。利用四阶龙格库塔方法分别对超声珩磨和超声两种条件下单、双空化泡的振动特性进行了数值计算,并讨论了声压幅值、超声频率、磨削液静压力及泡内含气量对单、双空化泡振动的影响。结果发现,超声珩磨要比超声作用下单、双空化泡的膨胀幅值更低、溃灭时间更短、泡壁溃灭速度更小;声压幅值和磨削液静压力都存在某一临界值,可用于区分磨削液单、双空化泡的应用范围;通过铝箔腐蚀法观察到磨削液单个空蚀坑体积要大于两相邻的空蚀坑,间接验证了理论模型的合理性。
Abstract
Based on the limitations of previous theoretical models under ultrasonic honing, an analytical model was established for predicting the vibration of cavitation bubbles during machining. The revised model used for single and double cavitation bubbles takes the process of gas expansion inside the bubble as an isothermal variation, and regards that of gas compression inside the bubble as an adiabatic variation. The vibration of single and double cavitation bubbles under ultrasonic vibration and ultrasonic honing was numerically simulated separately, utilising the fourth order Runge-Kutta method. The effects of acoustic pressure, ultrasonic frequency, ambient pressure and gas concentration inside a bubble on the expansion and collapse of cavitation bubbles were discussed. The results indicate that ultrasonic honing has a lower expansion amplitude value, a shorter collapse time and a smaller collapse velocity of single and double cavitation bubbles, compared with the influence of ultrasonic vibration. There always exists a critical value of acoustic pressure and ambient pressure in a grinding liquid, which can be used to distinguish the applications between single and double cavitation bubbles. The erosion pits generated by cavitation bubbles were observed by using the method of aluminum foil erosion, and the dimensions of a single erosion pit are larger than that of two adjacent pits, which fit the theoretical analysis well.
关键词
超声振动 /
珩磨 /
空化 /
气泡 /
动力学
{{custom_keyword}} /
Key words
ultrasonic vibration /
honing /
cavitation /
bubble /
dynamics
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Zhao B, Liu C S,Gao G F, et al. Surface characteristics in the ultrasonic ductile honing of ZrO2 ceramics using coarse grits[J]. Journal of Materials Processing Technology, 2002, (123):54-60.
[2] Zhu X J, Xu H J, Gao Y X. A new technology of improving surface quality of engine cylinder [J]. Key Engineering Materials, 2008, (359-360):138-142.
[3] Shao Y P, Zhu X J, Wang J Q, et al. Research on power ultrasonic vibration honing of sintered Nd-Fe-B[J]. Advanced Materials Research, 2012, (472-475):962–967.
[4] Brujian E A, Matsumoto Y. Collapse of micrometer-sized cavitation bubbles near a rigid boundary [J]. Microfluid Nanofluid, 2012, 13:957-966.
[5] Chen X G, Yan J C, Gao F, et al. Interaction behaviors at the interface between liquid Al-Si and solid Ti-6Al-4V in ultrasonic-assisted brazing in air [J]. Ultrasonics Sonochemistry, 2013, 20:144-154.
[6] Lugli F, Zerbertto F. An introduction to bubble dynamics [J]. Phycs. Chem. Chem. Phys, 2007, 9:2447-2456.
[7] Merouani S, Hamdaoui O, Rezgui Y, et al. Energy analysis during acoustic bubble oscillations: Relationship between bubble energy and sonochemical parameters[J]. Ultrasonics, 2014, 54: 227-232.
[8] Zhu X J, Guo C, Wang J Q, et al. Dynamics modeling of
cavitation bubble in the grinding area of power ultrasonic honing[J]. Adcanced Materials Research, 2013, 797: 108-111.
[9] 郭策,祝锡晶,刘国东等. 超声振动珩磨作用下空化泡动力学及影响参数[J]. 应用声学, 2015,1(34):51-57.
GUO Ce, ZHU Xi-jing, LIU Guo-dong, et al. Dynamics of cavitation bubble and parameters under ultrasonic vibration honing[J]. Journal of Applied Acoustics, 2015, 1(34):51-57.
[10] 卢义刚,吴雄慧. 双泡超声空化计算分析[J].物理学报,2011,4(60) : 0462021-0462025.
LU Yi-gang, WU Xiong-hui. Computational analysis of double-bubble ultrasonic cavitation [J]. Acta Phys. Sin,2011,4(60) :0462021-0462025.
[11] 张鹏利,林书玉,张涛.超声场中双气泡非线性动力学参数[J].中国科学:物理学 力学 天文学,2013,3(43): 249-256.
ZHANG Peng-li, LIN Shu-yu, ZHANG Tao. Ultrasonic field parameters of nonlinear dynamics of double-bubble[J]. Scientia Sinica Physica, Mechanica & Astronomica,2013,3(43): 249-256.
[12] Alexander A. Doinikov. Translational motion of two interacting bubbles in a strong acoustic field [J]. Physical Review E, 2001,(64):026301-026306.
[13] 王成会,林书玉. 超声场中气泡的耦合运动[J].声学学报,2011,3(36):325-331.
WANG Chen-hui, LIN Shu-yu. The coupled motion of bubbles in ultrasonic field [J]. Acta Acustica, 2011,3(36):325-331.
[14] 郭策,祝锡晶,王建青等. 超声珩磨作用下两空化泡动力学特性[J].力学学报,2014,6(46):879-886.
GUO Ce,ZHU Xi-jing, WANG Jian-qing. Dynamical behaviors of double cavitation bubbles under ultrasonic honing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 6(46): 879-886.
[15] 郭策. 功率超声珩磨磨削区空化泡动力学及其辐射声场的研究[D].太原:中北大学,2013.
Guo Ce. Dynamics of and radiated acoustic field cavitation
bubbles in the grinding area of power ultrasonic honing[J].
Taiyaun: North University of China, 2013.
[16] 王献孚.空化泡和超空化泡流动理论及应用[M].北京: 国防工业出版社.2009.
[17] Zhu X J, Gao Y X. A new ultrasonic vibration machine for honing [J]. Int. J. Computer Applications in Technology, 2007, 2(29):216-219.
[18] Zarepour H, Yeo S H. Predictive modeling of material removal modes in micro ultrasonic machining [J]. International Journal of Machine Tools & Manufacture, 2012, 62:13 - 23.
[19] 张敏,李晓谦,蒋日鹏等. 超声辐射杆振幅分布与空蚀区域[J].振动与冲击,2014,13(33): 59-62.
ZHAND Min, LI Xiao-qian, JIAND Ri-peng, et al. Amplitude distribution and cavitation corrosion field of ultrasonic transducer system [J]. Journal of vibration and shock,2014,13(33): 59-62.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}