四边弹性约束矩形板面内自由振动的DQM求解

蒲 育,滕兆春,赵海英

振动与冲击 ›› 2016, Vol. 35 ›› Issue (12) : 55-60.

PDF(1248 KB)
PDF(1248 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (12) : 55-60.
论文

四边弹性约束矩形板面内自由振动的DQM求解

  • 蒲 育 ,滕兆春 ,赵海英
作者信息 +

In-plane free vibration analysis for rectangular plates with elastically restrained edges by Differential Quadrature Method

  • Pu Yu ,Teng Zhao-chun ,ZHAO Hai-ying
Author information +
文章历史 +

摘要

基于二维线弹性理论,应用Halmiton原理,建立了四边弹性约束边界矩形板面内自由振动的控制偏微分方程。采用微分求积法(DQM)数值研究了弹性约束边界矩形板面内自由振动的无量纲频率特性。通过设置弹性刚度系数为0或∞,问题退化为各种典型边界矩形板的面内自由振动,与已有的矩形板面内自振频率结果进行比较,结果显示,本文的分析求解方法行之有效。最后考虑了矩形板边界条件、长宽比、刚度系数对自振频率的影响。

Abstract

Based on the two-dimension theory of linear elasticity, applied the Hamilton's principle, the in-plane free vibration of governing partial differential equations for rectangular plates with elastically restrained edges are derived. Using differential quadrature method (DQM), the dimensionless frequencies of in-plane free vibration of rectangular plates with elastically restrained edges are investigated. All the classical boundaries for in-plane displacements can be simulated by setting the stiffnesses of the restraining springs to either zero or infinite. The application of DQM in this paper have illustrated the analytical method was validated and accurate by comparison of previously reported results with those available in the literature for rectangular plates. Finally, The influence of the boundary conditions, geometrical parameter, and stiffness coefficients on the dimensionless frequencies of the rectangular plates are investigated.

关键词

矩形板 / 面内自由振动 / 弹性约束边界 / 无量纲频率 / 微分求积法

Key words

rectangular plates / in-plane free vibration / elastically restrained edges / dimensionless frequency / DQM

引用本文

导出引用
蒲 育,滕兆春,赵海英 . 四边弹性约束矩形板面内自由振动的DQM求解[J]. 振动与冲击, 2016, 35(12): 55-60
Pu Yu,Teng Zhao-chun,ZHAO Hai-ying . In-plane free vibration analysis for rectangular plates with elastically restrained edges by Differential Quadrature Method[J]. Journal of Vibration and Shock, 2016, 35(12): 55-60

参考文献

[1] Lyon R H. In-plane contribution to structural noise transmission[J]. Noise Control Engineering Journal, 1986, 26(1): 22-27.
[2] Langley R S, Bercin A N. Wave intensity analysis of high frequency vibration[J]. Philosophical Transactions of the Royal Society of London A, 1994, 346, 489-499.
[3] Bercin A N. An assessment of the effect of in-plane vibration on the energy flow between coupled plates[J]. Journal of Sound and Vibration, 1996, 191(5): 661-680.
[4] Bardell N S, Langley R S, Dunsdon J M. On the free in-plane vibration of isotropic rectangular plates[J]. Journal of Sound and Vibration, 1996, 191(3): 459-467.
[5] Farag N H, Pan J. Free and force in-plane vibration of rectangular plates[J]. Acoustical Society of America, 1998, 103(1): 408-413.
[6] Wang G, Wereley N M. Free in-plane vibration of rectangular plates[J]. AIAA, 2002, 40(5): 953-959.
[7] Gorman D G. Free in-plane vibration analysis of rectangular plates by the method superposition[J]. Journal of Sound and Vibration, 2004, 272(3): 831-851.
[8] Gorman D G. Exact solutions for the free in-plane vibration of rectangular plates with two opposite edges simply supported[J]. Journal of Sound and Vibration, 2006, 294(1): 131-161.
[9] Du Jingtao, Li Wen L, Jin Guoyong, et al. An analytical method for the in-plane vibration analysis of rectangular plates with elastically restrained edges[J]. Journal of Sound and Vibration, 2007, 306(3-5): 908-927.
[10] Xing Y F, Liu B. Exact solutions for the free in-plane vibrations of rectangular plates[J]. International Journal of Mechanical Sciences, 2009, 51(3): 246-255.
[11] Liu Bo, Xing Yufeng. Exact solutions for free in-plane vibration of rectangular plates[J]. Acta Mechanica Solida Sinica, 2011, 24(6): 556-567.
[12] Bert C W, Malik M. Differential quadrature method in computational mechanics[J]. Applied Mechanics Reviews, 1996, 49(1): 1-27.
[13] 蒲育, 滕兆春, 房晓林. 圆环板面内自由振动的DQM求解[J]. 振动与冲击, 2013, 32(24): 152-156. Pu Yu, Teng Zhao-chun, Fang Xiao-lin. In-plane free vibration of circular annular plates with differential quadrature method[J]. Journal of Vibration and Shock, 2013, 32(24): 152-156.
[14] 滕兆春,蒲育. 温度影响下FGM圆环板的面内自由振动分析[J]. 振动与冲击,2015, 34(9): 223-230. Teng Zhao-chun, Pu Yu. In-plane free vibration of FGM annular plates considering temperature effect[J]. Journal of Vibration and Shock, 2015, 34(9): 223-230.
 

PDF(1248 KB)

Accesses

Citation

Detail

段落导航
相关文章

/