2K-H行星轮系的平移扭转模型建立与非线性动态特性分析

周璐, 巫世晶, 李景, 王晓笋, 朱伟林, 李小勇

振动与冲击 ›› 2016, Vol. 35 ›› Issue (12) : 71-76.

PDF(2280 KB)
PDF(2280 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (12) : 71-76.
论文

2K-H行星轮系的平移扭转模型建立与非线性动态特性分析

  • 周璐, 巫世晶, 李景, 王晓笋, 朱伟林, 李小勇
作者信息 +

Establishment of translational and torsional model and nonlinear dynamic characteristic analysis for 2K-H planetary gear train

  • ZHOU Lu, WU Shi-jing , LI Jing, WANG Xiao-sun, ZHU Wei-lin, LI Xiao-yong
Author information +
文章历史 +

摘要

为探讨2K-H行星轮系的非线性动态特性,建立了考虑时变啮合刚度、综合啮合误差和齿侧间隙等强非线性因素的平移-扭转耦合动力学模型,并推导了系统的无量纲化18自由度运动学微分方程组。通过相轨线、Poincare图和时间历程曲线分析了啮合频率、啮合阻尼和齿侧间隙对系统分岔与混沌特性的影响。结果表明:随着啮合频率的增大,系统由激变途径进入混沌状态;增大啮合阻尼可以使系统摆脱混沌运动进入周期运动状态;在高速轻载时,系统的动态响应对间隙非常敏感,而在某些间隙范围内,响应只有幅值的改变,动力学行为不发生变化。

Abstract

To study the nonlinear dynamic characteristics of 2K-H planetary gear train, a translation-torsion coupling dynamic model is established taking the nonlinear factors like time-varying mesh stiffness, synthetic meshing error and gear backlash into account, and the dimensionless kinematic differential equations of 18 degrees of freedom for the system are derived. The influences of meshing frequency, damping and backlash on the system’s bifurcation and chaos characteristic are analyzed through the phase trajectory, Poincare graph and time history plot. The results show that the system will come into chaotic state through catastrophe way with the increase of meshing frequency. The system can get rid of chaotic movement into periodic motion state by increasing the damping. The dynamic response of the system is sensitive to backlash in high speed and light load while the response is only the change of amplitude not dynamic behavior in certain backlash ranges.

关键词

2K-H行星轮系 / 非线性 / 平移-扭转耦合 / 动态特性

Key words

2K-H planetary gear train / nonlinear / transverse-torsional coupled / dynamic characteristics

引用本文

导出引用
周璐, 巫世晶, 李景, 王晓笋, 朱伟林, 李小勇. 2K-H行星轮系的平移扭转模型建立与非线性动态特性分析[J]. 振动与冲击, 2016, 35(12): 71-76
ZHOU Lu, WU Shi-jing,LI Jing, WANG Xiao-sun, ZHU Wei-lin, LI Xiao-yong. Establishment of translational and torsional model and nonlinear dynamic characteristic analysis for 2K-H planetary gear train[J]. Journal of Vibration and Shock, 2016, 35(12): 71-76

参考文献

[1] 孙智民,季林红,沈允文. 2K-H行星齿轮传动非线性动力学[J]. 清华大学学报,2003, 43(5):636-639.
SUN Zhi-min, JI Lin-hong, SHEN Yun-wen. Nonlinear dynamic for 2K-H planetary gear train[J]. Journal of Tsinghua University, 2003, 43(5):636-639.
[2] 孙涛,沈允文,孙智民,等. 行星齿轮传动非线性动力学方程求解与动态特性分析[J]. 机械工程学报,2002,38(3):11-15.
SUN Tao, SHEN Yun-wen, SUN Zhi-min, etal. Nonlinear dynamic equation and dynamic characteristics analysis[J]. Journal of Mechanical Engineering, 2002,38(3):11-15.
[3] 杨绍普,申永军,刘献栋. 基于增量谐波平衡法的齿轮系统非线性动力学[J]. 振动与冲击,2005,24(3):40-42.
YANG Shao-pu, SHEN Yong-jun, LIU Xian-dong. Nonlinear dynamics of gear system based on incremental harmonic balance method[J]. Journal of Vibration and Shock,2005,24(3):40-42.
[4] KAHRAMAN A. Load sharing characteristics of planetary  transmissions[J].Mechanism  and  Machine Theory,1994,29(8):1151-1165.
[5] KAHRAMAN A.  Free torsional vibration characteristics of compound planetary gear sets[J].  Mechanism and Machine Theory,2001,36:953-971.
[6] KAHRAMAN A.  Non-linear dynamics of a spur gear pair[J].  Journal of Sound and Vibration,1990,142(1):49-75.
[7] KAHRAMAN A. Experiments on nonlinear dynamics behavior of an oscillator with clearance and periodically time-varying parameters[J]. ASME Journal of Applied Mechanics,1997, 64:217-226
[8] 李同杰,朱如鹏,鲍和云,等. 行星齿轮系扭转非线性振动建模与运动分岔特性研究[J]. 机械工程学报,2011,47(21):76-83.
LI Tong-jie, ZHU Ru-peng, BAO He-yun, etal. Modeling of torsional nonlinear vibration and movement bifurcation characteristic research for planetary train.[J]. Journal of Mechanical Engineering,2011,47(21):76-83.
[9] Guo Yichao,Parker R G. Purely rotational model and vibration models of compound planetary gears[J]. Mechanism and Machine Theory, 2010, 45(3): 365-377.
[10] 宋轶民,许伟东,张策,等. 2K-H行星传动的修正扭转模型建立与固有特性分析[J]. 机械工程学报,2006,42(5):16-21.
SONG Yi-min, XU Wei-dong, ZHANG Ce, etal. Modified torsional model establishment and inherent characteristic analysis for 2K-H planetary train[J]. Journal of Mechanical Engineering,2006,42(5):16-21.
[11] 巫世晶,刘振皓,潜波,等. 复合行星齿轮传动系统分岔与混沌特性研究[J]. 华中科技大学学报,2012,40(2):9-13.
WU Shi-jing, Liu Zhen-hao, QIAN Bo, etal. Bifurcation and chaos characteristics research for compound planetary gear train[J], Journal of HuaZhong university of science and technology,2012,40(2):9-13.
[12] 张策. 机械动力学[M]. 高等教育出版社,2014.
ZHANG Ce. Mechanical Dynamics[M]. Higher Education Publisher,2014.
[13] 巫世晶,彭则明,王晓笋,等. 啮合误差对复合行星轮系动态均载特性的影响[J]. 机械工程学报,网络优先出版,2014.
WU Shi-jing, Peng Ze-ming, WANG Xiao-sun, etal. The influence of meshing error of dynamic load characteristic for compound planetary gear train[J]. Journal of Mechanical Engineering,2014
[14] 王晓笋,巫世晶,周旭辉,等. 含侧隙非线性齿轮传动系统的分岔与混沌分析[J]. 振动与冲击,2008,27(1):53-57.
WANG Xiao-sun, WU Shi-jing, ZHOU Xu-hui,etal. With lateral clearance nonlinear bifurcation and chaos analysis of gear transmission system[J]. Journal of Vibration and Shock,2008,27(1):53-57

PDF(2280 KB)

552

Accesses

0

Citation

Detail

段落导航
相关文章

/