[1] Lieu T, Farhat C. Adaptation of aeroelastic reduced-order models and application to an F-16 configuration[J]. AIAA Journal,2007,45 (6):1244–1257.
[2] Hall K C, Thomas J P, Dowell E H. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows[J]. AIAA Journal,2000 38 (10):1853–1862.
[3] Thomas J P, Dowell E H, Hall K C. Using automatic differentiation to create a nonlinear reduced-order- model aerodynamic solver[J]. AIAA Journal,1020,48 (1):19–24.
[4] Lucia D J, Beran P S, Silva W A. Reduced-order modeling: new approaches for computational physics[J]. Progress in Aerospace Sciences,2004,40 (2004):51–117.
[5] 邱亚松,白俊强,华俊. 基于本征正交分解和代理模型的流场预测方法.航空学报.2013,34 (6):1249-1260.
Qiu Ya-song, Bai Jun-qiang, Hua Jun. Flow field estimation method based on proper orthogonal decomposition and surrogate model[J]. Acta Aeronautica et Astronautica Sinica.2013,34 (6):1249-1260.
[6] Silva W. Identification of nonlinear aeroelastic systems based on the Volterra theory: progress and opportunities[J]. Nonlinear Dynamics,2005,39:25–62.
[7] J. P. Thomas, C. H. Custer, E. H. Dowell, et al. F-16 fighter aeroelastic computations using a harmonic balance implementation of the OVERFLOW2 flow solver[C]. AIAA Paper 2010-2632. Presented at the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Meterials Conference.
[8] Liu L, Friedmann P P, Padthe A K. An approximate unsteady aerodynamic model for flapped airfoils including improved drag predictions[C]. Proceedings of the 34th European Rotorcraft Forum,Liverpool,UK,2008: 1037-1081.
[9] Trizila P C, Kang C, Visbal M R, et al. Unsteady fluid physics and surrogate modeling of low Reynolds number, flapping airfoils[C]. 38th Fluid Dynamics Conference and Exhibit, Seattle, WA, AIAA Paper 2008-3821,2008.
[10] Trizila P C, Kang C, Visbal M R, et al. A surrogate model approach in 2D versus 3D flapping wing aerodynamic analysis[C]. 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria,British Columbia, AIAA Paper 2008-5914,2008.
[11] Suresh S, Omkar S N, Mani V, et al. Lift coefficient prediction at high angle of attack using recurrent neural network[J]. Aerospace Science and Technology,2003,7 (8):595–602.
[12] Marques F D, Anderson J. Identification and prediction of unsteady transonic aerodynamic loads by Multi-Layer Functionals[J]. Journal of Fluids and Structures,2001,15:83–106.
[13] Lieu T, Farhat C. Adaptation of POD-based aeroelastic ROMs for varying mach number and angle of attack: application to a complete F-16 configuration[C]. 2005 U. S. Air Force T&E Days.2005-7666.
[14] Glaz B, Liu L, Friedmann P P. Reduced order nonlinear unsteady aerodynamic modeling using a Surrogate Based Recurrence Framework[J]. AIAA Journal, 2010, 48 (10):2418–2429.
[15] Glaz B, Liu L, Friedmann P P, et al. A Surrogate-Based approach to reduced-order dynamic stall modeling[J]. Journal of the American Helicopter Society, 2012, 57 (2): 1–9.
[16] Glaz B, Liu L, Friedmann P P, et al. A Surrogate Based Approach to reduced-order dynamic stall modeling[C]. 51st AIAA/ASME/ASCHE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Orlando, FL, AIAA Paper 2010-3042,2010,1–24.
[17] Glaz B, Friedmann P P, Liu L. Reduced order dynamic stall modeling with swept flow effects using a Surrogate Based Recurrence Framework[J]. AIAA Journal, 2013, 51 (4):910–921.
[18] 王博斌,张伟伟,叶正寅.基于神经网络模型的动态非线气动力辨识方法[J]. 航空学报. 2010, 31(7):1379-1388.
Wang Bobin, Zhang Weiwei, Ye Zhengyin. Unsteady nonlinear aerodynamics identification based on neural network model[J]. Acta Aeronautica et Astronautica Sinica. 2010, 31(7):1379-1388.
[19] Sacks J, Schiller S B, Welch W.J. Designs for Computer Experiments[J]. Technometrics.1989,31 (1):41-47.
[20] 阎平凡,张长水. 人工神经网络与模拟进化计算[M]. 清华大学出版社. 2005.
Yan Ping-fan, Zhang Chang-shui. Artificial neural networks and evolutionary computation simulation[M]. Tsinghua University Press. 2005.
[21] Moody J E, Darken C J. Fast Learning in Networks of Locally-Tuned Processing Units[J]. Neural Computation, 1989, 1(2): 281-294.
[22] Vapnik V N., Somla A. Support Vector Method for Function Approximation[J], Regression Estimation and Signal Processing. 1997.
[23] Sacks J, Welch W J, Mitchell T J, Wynn H. Design and analysis of computer experiments[J]. Statistical Science, 1989 4(4):409-423.
[24] Simpson T W, Toropov V, Balabanov V, et al. Design and analysis of computer experiments in multidisciplinary design optimization: a review of how we have come or not[C]. 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, British Colombia, 10-12 September 2008.
[25] Queipo N V, Haftka R T, Shyy W, et al. Surrogate-Based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41:1–28.
[26] Leontaritis I J, Billings S A, Input-output parametric models for nonlinear systems[J]. International Journal of Control,1985,41 (2): 03–344.
[27] Levin A U, Narendra K S. Control of nonlinear dynamical systems using neural networks—Part II: observability, identification, and control[J]. IEEE Transactions on Neural Networks,1996,7 (1):30–42.
[28] Jin R., Chen W, Sudjianto, A. An efficient algorithm for constructing optimal design of computer experiments[J]. Journal of Statistical Planning and Inference, 2005, 134 (1):268–287.
[29] Martin J, Simpson T. Use of Kriging models to approximate deterministic computer models[J]. AIAA Journal, 2005 43 (4):853–863.
[30] Jones D R. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization. 2001, 21:345–383.
[31] 赵永辉. 气动弹性力学与控制[M]. 科学出版社. 2007.
ZHAO Yong-hui. Aeroelastic Mechanics and Dominator[M]. Press of science. 2007.
[32] Thomas J P, Dowell E H, Hall K C. Nonlinear inviscid aerodynamic effects on transonic divergence, flutter, and limit-cycle oscillations[J]. AIAA Journal. 2002 40(4): 638-646.