基于柔性铰链的新型快速伺服刀架设计

孙涛1 李国平1 娄军强1 邱辉1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (13) : 160-166.

PDF(2143 KB)
PDF(2143 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (13) : 160-166.
论文

基于柔性铰链的新型快速伺服刀架设计

  • 孙涛1 李国平1  娄军强1  邱辉1
作者信息 +

Design of a new fast servo tool based on flexible hinges

  • Li Guoping1  Sun Tao1  Lou Junqiang1  Qiu Hui1
Author information +
文章历史 +

摘要

针对目前用于非圆精密加工的快速伺服刀架只能提供单向驱动力的问题,设计了一种基于柔性铰链的新型快速伺服刀架。建立了刀具放大结构的力学模型,利用理论力学的知识推导出刀具的放大率、刚度和固有频率解析式,并对实验刀具进行有限元分析。为了验证理论计算和有限元分析结果的准确性,对刀具进行实验测试。测试结果显示,理论计算结果与实验结果的最大误差为14.87%,平均误差为12.635%,有限元分析结果与实验结果的最大误差为6.54%,平均误差为5.925%,表明理论计算和有限元分析的准确性。最后提出了一种快速伺服刀架参数的初选流程,为快速伺服刀架的研究提供一定的理论基础。

Abstract

For the problem of currently fast servo tool(FST) used for non-circular precision machining being only able to provide one-way driving force, a new FST based on flexible hinges was designed. To analyze FST conveniently, the simplified modeling of amplification mechanism of FST was developed, and then magnification ratio, stiffness and natural frequency of FST were deduced according to the knowledge of materials mechanics. Comparing to theoretical calculation, Finite Element Analysis(FEA) has better performance on structural analysis. So FEA were performed to analyze magnification ratio, stiffness and natural frequency of FST . In order to verify the accuracy of the results of the theoretical analysis and FEA, experimental test on static and dynamic behavior of FST were performed. The results show that the maximum error and the average error between theoretical analysis and experimental result are 14.87%and 12.635%, and the maximum error and the average error between FEA and experimental result are 6.54%and5.925%, which verified the accuracy of theoretical analysis and FEA. Finally , a procedure to optimize dimensions of the FST was given, provided a theoretical basis for the study of fast servo tool.
 

关键词

柔性铰链  / 快速伺服刀架  / 理论模型  / 有限元分析

Key words

flexure hinge  / fast servo tool(FST)  / theoretical model  / Finite Element Analysis(FEA)

引用本文

导出引用
孙涛1 李国平1 娄军强1 邱辉1. 基于柔性铰链的新型快速伺服刀架设计[J]. 振动与冲击, 2016, 35(13): 160-166
Li Guoping1 Sun Tao1 Lou Junqiang1 Qiu Hui1. Design of a new fast servo tool based on flexible hinges[J]. Journal of Vibration and Shock, 2016, 35(13): 160-166

参考文献

[1] 吴丹, 谢晓丹, 王先逵. 快速刀具伺服机构研究进展[J]. 中国机械工程, 2008, 19(11):1379-1383.
   Wu Dan, Xie Xiaodan, Wang Xiankui. Research Review of Fast Tool Servo[J]. China Mechanical Engineering, 2008, 19(11):1379-1383.
[2] 沈南燕,李静,方明伦等. 非圆磨削中曲轴角向定位方法及其误差分析[J]. 机械工程学报, 2014,50(9)194-199.
   SHEN Nanyan, LI Jing, FANG Minlun est. Radial Angular Orientation Method and Its Error Analysis for Crankpin Non-circular Grinding[J]. JOURNAL OF MECHANICAL ENGINEERING, 2014,50(9)194-199.
[3] 翟鹏, 张承瑞, 兰红波. 基于模态分析的高频响伺服镗刀杆研究[J]. 振动与冲击, 2006, 25(6):170-172.
   Zhai Peng, Zhang Chengrui, Lan Hongbo. Study on boring bars with high frequency-response feature based on modal analysis[J]. JOURNAL OF VIBRATION AND SHOCK, vol 25 No.6 2006,170-172.
[4] Haifeng Wang, Shuyan Yang. Design and control of a fast tool servo used in noncircular piston turning process[J]. Mechanical Systems and Signal Processing, 2013,36:87-94.
[5] 胡世峰,朱石坚,楼京俊等. 基于CMAC小脑神经网络的超磁致伸缩作动器高精度控制的仿真研究[J]. 振动与冲击,2015,28(3),68-72.
HU Shi-feng, ZHU Shi-jian, LOU Jing-jun. High-precision control of giant magnetostrictive actuator based on CMAC neural network[J]. JOURNAL OF VIBRATION AND SHOCK, vol 28 No.3 2015,68-72.
[6] 崔玉国,朱耀祥,马剑强等. 压电微动平台的定位控制[J]. 振动与冲击,2015,34(17):63-68.
    CUI Yu-guo, ZHU Yao-xiang, MA Jiang-qiang et al. Position control for a piezoelectric micro-positioning stage[J]. JOURNAL OF VIBRATION AND SHOCK, vol 34 No.17 2015,63-68.
[7] H.C. Liaw, B. Shirinzadeh. Robust generalised impedance control of piezo-actuated flexure-based four-bar mechanisms for micro/nano manipulation[J]. Sensors actuators A , 2008, 148:443-453.
[8] Z Ni, D Zhang, Y Wu, et al. Analysis of parasitic motion in parallelogram compliant mechanism[J]. Precision Engineering, 2010, 34: 133-138.
[9] Keqi Qi, Yang Xiang, Chao Fang et al. Analysis of the displacement amplification ratio of bridge-type mechanism[J]. Mechanism and Machine Theory, 2015, 87:45-56.
[10] Qingsong Xu, Yangmin Li. Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier[J]. Mechanism and Machine Theory, 2011,46:183-200.
[11] M. Jouaneh, R.Y. Yang. Modeling of flexure-hinge type lever mechanisms[J], Precision Engineering, 2003, 27:407-418.
[12] Y Tian, B Shirinzadeh, D Zhang et al. Design and forward kinematics of the compliant micro-manipulator with lever mechanisms[J].  Precision Engineering, 2009, 33:466-475.
[13] Yangmin Li, Qingsong Xu. Modeling and performance evaluation of a flexure-based XY parallel micromanipulator[J]. Mechanism and Machine Theory,2009,44:2127-2152.
[14] Haoquan Ma, Jie Tian, Dejin Hu. Development of a fast tool servo in noncircular turning and its control[J]. Mechanical Systems and Signal Processing, 2013,41:705-713.
 [15] Zhiwei Zhu, Xiaoqin Zhou, Zhiwei Liu elt. Development of a piezoelectrically actuated two-degree-of-freedom fast tool servo with decoupled motions for micro-/nanomachining[J]. Precision Engineering, 2014,38:809-820.
[16] 吴鹰飞, 周兆英. 柔性铰链的设计计算[J]. 工程力学, 2002,19(6) 137-139.
WU Yingfei, ZHOU Zhaoying. Design of flexure hinges[J]. Engineering Mechanics. 2002,19(6) 137-139.
[17] Paros J M, Weisboro L. How to design flexure hinges[J]. Machine Design, 1956, 37(27): 151-157.       

PDF(2143 KB)

Accesses

Citation

Detail

段落导航
相关文章

/