考虑高程效应的水下爆破振动衰减拟合模型研究

彭亚雄1,2 吴立1,2 苏莹1,2 李红勇3 李春军3

振动与冲击 ›› 2016, Vol. 35 ›› Issue (13) : 173-178.

PDF(1063 KB)
PDF(1063 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (13) : 173-178.
论文

考虑高程效应的水下爆破振动衰减拟合模型研究

  • 彭亚雄1,2  吴立1,2  苏莹1,2  李红勇3  李春军3
作者信息 +

Study on the fitting model of underwater blasting vibration attenuation considering the effect of elevation

  • PENG Ya-xionga,b, WU Lia,b, SU Yinga,b, LI Hong-yongc, LI Chun-junc
Author information +
文章历史 +

摘要

由于水介质的存在,影响爆破振动衰减的因素大幅增加,同时导致了水下爆破监测的困难。因此,水下爆破工程中,传统的萨道夫斯基公式(TSF)已不完全适用。通过引入高程差因子β,得到修正的萨道夫斯基公式(MSF)。分别建立修正公式的线性与非线性拟合模型,并求解K、α、β三个相关参数。结合万州公路长江大桥防撞带水下爆破工程,用线性与非线性拟合模型分别进行计算,并求解出K、α、β及残差平方和RSS。分析结果表明,非线性模型的拟合精度高于线性模型,而且非线性拟合模型能够更好地研究考虑高程效应的水下爆破振动衰减规律。

Abstract

 Due to the presence of water medium, the vibration attenuation of underwater blasting is greatly affected by the effect of water, which results in the practical difficulties during monitoring. Therefore, the traditional Sadove formula (TSF) is no longer quite suitable for the underwater blasting engineering. With the introduction of β to show height deviation, we can get the modified Sadove formula (MSF). Then, the article builds the linear and nonlinear fitting model of MSF and solves the relevant parameters of K, α, β. Finally, combining with the underwater blasting engineering of the collision control region of the bridge over the Yangtze river in Wan Zhou, it calculates the results separately with the linear and nonlinear fitting model of MSF and solves out the three parameters as well as the sum of the squared residuals RSS. The analysis results show that the nonlinear regression method is more accurate than the linear one, thus the nonlinear regression method can better study the vibration attenuation law of underwater blasting under the consideration of the effect of elevation.

关键词

水下爆破 / 振动衰减 / 高程效应 / 拟合模型

Key words

underwater blasting / vibration attenuation / effect of elevation / the fitting model

引用本文

导出引用
彭亚雄1,2 吴立1,2 苏莹1,2 李红勇3 李春军3. 考虑高程效应的水下爆破振动衰减拟合模型研究[J]. 振动与冲击, 2016, 35(13): 173-178
PENG Ya-xionga,b, WU Lia,b, SU Yinga,b, LI Hong-yongc, LI Chun-junc. Study on the fitting model of underwater blasting vibration attenuation considering the effect of elevation[J]. Journal of Vibration and Shock, 2016, 35(13): 173-178

参考文献

[1] 饶运章, 汪弘. 爆破振动速度衰减规律的多元线性回归分析[J]. 金属矿山, 2013, (12): 46-51.
RAO Yun-zhang,WANG Hong. Multiple Regression Linear Analysis on Attenuation Formula of Blasting Vibration Velocity [J]. Metal Mine, 2013, (12): 46-51.
[2] 胡建华,尚俊龙,罗先伟等. 单孔爆破振动监测与衰减规律多元线性化回归[J]. 振动与冲击, 2013, 32(16): 49-53
HU Jian-hua, SHANG Jun-long LUO Xian-wei, et al. Monitoring of single-hole blasting vibration and detection of its attenuation law by using multiple linear regression[J]. Journal of Vibration And Shock, 2013, 32(16): 49-53.
[3] 卢文波, Hustrulid W. 质点峰值振动速度衰减公式的改进[J]. 工程爆破, 2002, 8(3): 1-4.
LU Wen-bo, Hustrulid W. An improvement to theequation for the attenuation of the peak particlevelocity[J]. Engineering Blasting, 2002, 8(3): 1-4.
[4] 吕涛, 石永强, 黄诚, 等. 非线性回归法求解爆破振动速度衰减公式参数[J]. 岩土力学, 2007, 28(9): 1871-1878.
LU Tao, SHI Yong-qiang, HUANG Cheng, et al. Study on attenuation parameters of blasting vibration by nonlinear regression analysis[J]. Rock and Soil Mechanics, 2007,28(9): 1871-1878.
[5] 文建华, 李新平, 张文成, 等. 复合遗传算法在爆破震动测试参数确定中的研究[J]. 岩土力学, 2005, 26(1): 160-162.
WEN Jian-hua, LI Xin-ping, ZHANG Wen-cheng, et al. A study of parameter inversion of blasting vibration badsed on compositely genetic algorithm [J]. Rock and Soil Mechanics,2005, 26(1): 160-162.
[6] 史秀志, 陈 新, 史采星, 等. 基于GEP的爆破峰值速度预测模型[J]. 振动与冲击, 2015, 34(10): 95-99.
SHI Xiu-zhi, CHEN Xin, SHI Cai-xing, et al. Study on the fitting model of underwater blasting vibration attenuation considering the effect of elevation[J].Journal of Vibration and Shock, 2015, 34(10): 95-99.
[7] 徐全军, 张庆明, 恽寿榕. 爆破地震峰值的神经网络预报模型[J]. 北京理工大学学报, 1998, 18(4): 472-475.
XU Quan-jun, ZHANG Qing-ming, YUN Shou-rong. Neural network model for forecasting peak acceleration of blasting vibration [J]. Journal of Beijing Institute of Technology, 1998, 18(4): 472-475.
[8] 徐全军, 刘强, 聂渝军, 等. 爆破地震峰值预报神经网络研究 [J]. 爆炸与冲击, 1999, 19(2): 134-138.
XU Quan-jun, LIU Qiang, NIE Yu-jun, et al. Study of neural network prediction on peak particle amplitude of blasting ground vibration [J]. Explosion and Shock Waves, 1999, 19(2): 134-138.
[9] 王国立,申英锋,郭冰若. 人工神经网络预测爆破效果[J].矿治, 2002, 11(2): 12-15.
WANG Guo-li, SHEN Ying-feng, GUO Bing-ruo.Blasting effects predicted by artificial neural net system[J]. Mining & Metallurgy, 2002, 11(2): 12-15.
[10] 周志华, 张金山. 基于人工神经网络的爆破震动速度峰值的预报[J]. 西部探矿工程, 2003, 10: 101-102.
ZHOU Zhi-hua, ZHANG Jin-shan. Prediction of blasting vibration velocity based on artificial neural network[J]. West-China Exploration Engineering, 2003, (10): 101-102.
[11] 夏梦会, 董香山, 张力民, 等. 神经网络模型在爆破震动强度预测中的应用研究[J]. 有色金属(矿山部分),2004, 56(3): 25-27.
XIA Meng-hui, DONG Xiang-shan, ZHANG Li-min, et al. Study on the prediction of peak velocity of explosive loading with neural network model[J]. Non-ferrous Metal(Mine), 2004, 56(3): 25-27.
[12] 谢全敏, 夏元友, 李新平. 龙滩水电站蠕变体边坡的爆破振动控制研究[J]. 岩石力学与工程学报, 2003, 22(11): 1929-1930.
XIE Quan-min, XIA Yuan-you, LI Xin-ping. Study on blasting vibration creep mass slop of Longtan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1929-1930.
[13] 朱传统, 刘宏根. 地震波参数沿边坡坡面传播规律公
式选择[J]. 爆破, 1988, (2): 30-34.
ZHU Chuan-tong, LIU Hong-gen. Selection of formula on propagation of the parameters of explosive seismic wave along slope[J]. Blasting, 1988, (2): 30-34.
[14] Moore A J, Richards A B, Gad E. Structural response of brick veneer houses to blast vibration[C]. Proceedings of the 29th Annual Conference on Explosives and Blasting Technique, USA, 2003.
[15] 爆破安全规程(GB6722-2011)[S]. 北京: 中国标准出版社, 2012.
[16] 李新平,汪斌. 基于爆破相似律的地下厂房爆破振动速度分析[J]. 武汉理工大学学报, 2011, 33(2): 92-95.
LI Xin-ping, WANG Bin. Analysis of Blasting Vibration Velocity in Underground Powerhouse Based on Similarity Law of Blasting[J]. Journal of Wuhan University of Technology, 2011, 33(2): 92-95.
[17] 王民寿, 郭庆海. 用双随机变量回归改进爆破振速回归分析[J]. 爆炸与冲击, 1998, 18(3): 283-288.
WANG Min-shou, GUO Qing-hai. Regression analysis of blasting vibrational velocity by the double random[J]. Explosion and Shock Waves, 1998, 18(3): 283-288.
[18] 姚尧. 爆震的放大效应与二元回归分析[J]. 爆破, 1992, 9(4): 5-8.
YAO Yao. Enlarged effect of blasting and duality regression analyses[J]. Blasting, 1992, 9(4): 5-8.
[19] 周同岭, 杨秀甫, 翁家杰. 爆破地震高程效应的试验研
究[J]. 建井技术, 1997, 18(增刊): 31-35.
ZHOU Tong-ling, YANG Xiu-pu, WENG Jia-jie. Experimental study on elevation effect of blasting seism[J]. Mine Construction Technology, 1997, 18(Supp): 31-35.

PDF(1063 KB)

Accesses

Citation

Detail

段落导航
相关文章

/