基于无网格法梁结构多裂纹定量识别

罗志钢1,蒋占四1,王衍学1,向家伟2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (13) : 206-211.

PDF(1529 KB)
PDF(1529 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (13) : 206-211.
论文

基于无网格法梁结构多裂纹定量识别

  • 罗志钢1,蒋占四1,王衍学1,向家伟2
作者信息 +

Based on meshless method to detect multiple cracks in beam structures

  • Luo Zhigang1,Jiang Zhansi1, Wang yanxue1, Xiang Jiawei2
Author information +
文章历史 +

摘要

研究基于无网格法的悬臂梁结构多裂纹定量识别方法。通过局部加权残量法将裂纹以虚拟边界融入离散系统方程,建立多裂纹梁结构动力学模型,获得定量识别正问题数据库。结合曲率模态法先找到裂纹位置,再以实测频率作为反问题输入利用粒子群法反演寻优从而定量预测出裂纹的损伤程度。数值仿真表明,该方法前处理简单,适合用来模拟非连续裂纹问题,为结构多裂纹识别提供了新途径。

Abstract

Research multiple cracks cantilever structure recognition based on meshless methods. By locally weighted residual method to crack into the discrete system equations through a virtual boundary, Establish multi-cracked beam structural dynamics model to obtain quantitative identification of positive problem database. Combined curvature modal method to find the crack position, then being measured frequency input as the inversion, using particle swarm optimization to quantitatively predict the extent of damage cracks. Numerical simulations show that, the method is simple, suitable for simulation of discontinuous cracks problem, it provides a new way for multiple cracks identification.

关键词

无网格法 / 多裂纹 / 识别

Key words

 meshless method / multiple cracks / identification

引用本文

导出引用
罗志钢1,蒋占四1,王衍学1,向家伟2. 基于无网格法梁结构多裂纹定量识别[J]. 振动与冲击, 2016, 35(13): 206-211
Luo Zhigang1,Jiang Zhansi1, Wang yanxue1, Xiang Jiawei2. Based on meshless method to detect multiple cracks in beam structures[J]. Journal of Vibration and Shock, 2016, 35(13): 206-211

参考文献

[1] 张敬芬,赵德有. 工程结构裂纹损伤振动诊断的发展现状和展望[J].振动与冲击, 2002, 21(4): 22-26,27.
ZHANG Jin-fen, ZHAO De-you. The current status and future development of damage diagnosis of vibration engineering structural crack [J]. Journal of vibration and shock, 2002, 21(4): 22-26,27.
[2] 罗 毅,甄立敬. 基于小波包与倒频谱分析的风电机组齿轮箱齿轮裂纹诊断方法[J].振动与冲击, 2015, 34(3): 210-214.
LUO Yi,ZHEN Li-jing. Diagnosis Method of Turbine Gearbox Crack Based on Wavelet Packet and Cepstrum Analysis[J]. Journal of vibration and shock, 2015, 34(3): 210-214.
[3] 袁胜发 李秀琼. 基于网格式支持向量机算法的转轴裂纹故障诊断[J].振动与冲击, 2009, 28(9): 155-158.
YUAN Sheng-fa LI Xiu-qiong. Shaft crack fault diagnosis based on grid support vector machines[J]. Journal of vibration and shock , 2009, 28(9): 155-158.
[4] 陈雪峰, 向家伟, 董洪波, 等. 基于区间 B 样条小波有限元的转子裂纹定量识别[J]. 机械工程学报, 2007, 43(3):123-127.
CHEN Xue-feng, XIANG Jia-wei, DONG Hong-bo, HE Zheng-jia. Quantitative identification of rotor cracks based on finite element of B-SPLINE wavelet on the interval  [J]. Chinese Journal of Mechanical Engineering, 2007, 43(3): 123-127.
[5] 李兵, 陈雪峰, 何正嘉. 基于小波有限元的悬臂梁裂纹遗传优化辨识[J]. 振动与冲击, 2009, 28(12): 27-29.
LI Bin, CHEN Xue-feng, HE Zheng-jia. Genetic optimization identification of Cantilever cracks based on finite element of wavelet [J]. Journal of vibration and shock, 2009, 28(12): 27-29.
[6] Xiang J W, Jiang Z S, Wang Y X and Chen X F. Study on damage detection software of beam-like structures[J]. Structural Engineering and Mechanics. 2011,39(1):77-91.
[7] Atluri S N, Zhu T. A new meshless local Petrov-Galerkin  approach in computational mechanics,ComputationalMechanics,1998,2:117-127.
[8] 彭华,游春华,孟勇. 模态曲率差法对梁结构的损伤诊断[J]. 工程力学,2006, 23(7): 49-53.
PEN Hua, YOU Chun-hua, MENG Yong. Damage diagnosis of beam structures by modal curvature difference method [J]. Engineering Mechanics, 2006, 23(7): 49-53,7.
[9] 何钦象, 杨智春, 姜峰, 田小红. 薄板损伤检测的高斯曲率模态差方法[J]. 振动与冲击, 2010, 29(7): 112-115.
HE Qin-xiang, YANG Zhi-chun, JIANG Feng, TIAN Xiao-hong. Damage detection for an elastic thin plate based on Gauss curvature modal difference [J]. Journal of vibration and shock, 2010, 29(7): 112-115.
[10] Wang Y F,Liang M, Xiang J W. Damage detection method for wind turbine blades based on dynamics analysis and mode shape difference curvature information[J]. Mechanical Systems and Signal Processing. 2014, 48(2): 351-367.
[11] K Ravi, Prakash, Babu, G Durga, Prasad. Crack detection in beams from the differences in curvature mode shapes[J]. Journal of Structural Engineering, 2012, 39(2): 237-242.
[12] Rizos P F, Aspragatos N, Dimarogonas A D. Identification of crack location and magnitude in a cantilever beam from the vibration modes[J]. Journal of Sound and Vibration,1990,138(3): 381-388.
[13] Zheng D Y, Fan S C. Natural frequency changes of a non-uniform beam with multiple cracks via modified Fourier series[J]. Journal of Sound and Vibration ,2001,242 (5): 701-717.
[14] 何永勇, 褚福磊, 郭丹等. 基于遗传算法的旋转机械转子裂纹识别的研究. 机械工程学报, 2001,37(10): 69-74.
HE Yong-yong, ZHE Fu-lei, GUO Dan, et al. Research on rotating machinery rotor cracks identification based on genetic algorithm [J]. Chinese Journal of Mechanical Engineering, 2001,37(10): 69-74.
[15] A.K. Pandey, M. Biswas, M.M.Samman.Damage detection from changes in curvature mode shapes [J]. Journal of Sound and Vibration,1991,145(2): 321-332.
[16] Jinhee Lee. Identification of multiple cracks in a beam using natural frequencies[J]. Journal of Sound and Vibration,320(2009):482-490.
[17] Birge, B. PSOt - a particle swarm optimization toolbox for use with Matlab. Proceedings of the 2003 IEEE Swarm Intelligence Symposium (SIS03).
[18] M. Suk ,D. Gillis . Effect of mechanical design of the suspension on dynamic loading process [J] Microsystem Technologies,2005,11(8-10):846-850.

PDF(1529 KB)

Accesses

Citation

Detail

段落导航
相关文章

/