以四轮转向汽车(4WS)为研究对象,利用分析力学方法,建立了二自由度动力模型。利用Hurwitz代数判据,对4WS系统Hopf分岔进行了计算,得到分岔点。利用中心流形理论将高维4WS汽车系统降到二维,并通过计算二维分岔稳定性指标的正负判定原系统Hopf分岔的类型。利用Matlab软件对系统进行了仿真。结果表明,4WS汽车在一定的参数组合下出现转向自动摆动的性质,对振动的控制研究具有重要的参考价值。
Abstract
The dynamic model of two degrees of freedom is established for an automobile with four-wheel steering (4ws) by analysis mechanics. The Hopf bifurcation of 4WS system was calculated and the bifurcation point was obtained with Hurwitz algebraic criterion. The high-dimensional 4WS system was transferred to a two-dimensional system in the light of center manifold theory, and the bifurcation stability coefficient of the two-dimensional system was calculated to determine the Hopf bifurcation type of original system. The system was simulated using Matlab software. The result shows that automatic swing of steering occurs for an automobile of 4WS under specific parameters, and it has important reference value for the research on control of vibration.
关键词
四轮转向 /
Hopf分岔 /
Hurwitz行列式 /
中心流形理论
{{custom_keyword}} /
Key words
four-wheel steering /
Hopf bifurcation /
Hurwitz determinant /
center manifold theory
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杜 峰,魏 朗,赵建有. 基于状态反馈的四轮转向汽车最优控制[J]. 长安大学学报: 自然科学版,2008,28(4): 91-94.
DU Feng, WEI Lang, ZHAO Jian-you. Optimization control of four-wheel steering vehicle based on state feedback [J]. Journal of Chang, an University: NaturaI Science Edition, 2008,28(4): 91-94.
[2] CHEN Ning, CHEN Nan, CHEN Yan-dong. On fractional control method for four-wheel-steering vehicle [J]. Science China Technological Sciences, 2010, (03): 47-53.
[3] Dave Crolla, 喻 凡. 车辆动力学及其控制[M]. 北京:人民交通出版社,2004.
Dave Crolla, Yu Fan. Vehicle Dynamics and Control [M]. Beijing: China Communication Press, 2004.
[4] 刘春辉,张伯俊,孔 超,等. 四轮转向汽车的分岔与失稳分析[J]. 机械科学与技术,2011, 30(8):1326-1330.
Liu Chunhui, Zhang Bojun, Kong Chao, et al. Analysis on Bifurcation and Destabilization of Four Wheel Steering Vehicle [J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(8):1326-1330.
[5] 曾 宇,陈思忠,杨 林. 四轮转向汽车操纵稳定性分析[J]. 车辆与动力技术,2010,(2):5-13.
ZENG Yu, CHEN Si-zhong, YANG Lin. Analysis of Handling Stability for a 4W S Vehicle [J]. Vehicle& Power Technology, 2010, (2):5-13.
[6] 贺丽娟,李庆军. 汽车整车稳定性的Hopf分岔特性数值分析[J]. 农业装备与车辆工程,2010,(4):3-7.
HE Li-juan, Li Qing-jun. Numerical Analysis of Hopf Bifurcation Character of Automobile Stability [J]. AGRICULTURAL EQUIPMENT & VEHICLE ENGINEERING, 2010, (4): 3-7.
[7] 宋作军. 四轮转向汽车的操纵稳定性研究[D]. 天津:天津大学,2007.
SONG Zuo-jun. Study of Manipulate Stability for Four-Wheel Steering Automobile[D]. TIAN JIN: Tian Jin University, 2007.
[8] 张继业,杨翊仁,曾 京. Hopf分岔的代数判据及其在车辆力学中的应用[J]. 力学学报,2000,32(5): 596-605.
ZHANG Ji-ye, YANG Yi-ren, ZENG Ji. An Algorithm Criterion for Hopf Bifurcation and its Application in Vehicle Dynamics[J]. Journal of Mechanics,2000, 32(5): 596-605.
[9] 陆启韶,彭临平,杨卓琴. 常微分方程与动力系统[M]. 北京:北京航空航天大学出版社,2010.
LU Qi-zhao, PENG Lin-ping, YANG Zhuo-qin. Ordinary Differential Equation and Dynamical Systems [M]. Beijing: Bei Hang University Press, 2010.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}