为探究超声珩磨中空化微射流对壁面的冲击作用,考虑壁面弹塑性变形、超声场及珩磨压场,采用SPH-FEM耦合方法建立了空化微射流冲击模型并进行了数值仿真分析,随后进行了试验验证,结果表明:微射流冲击过程中形成的侧向射流速度高于微射流冲击速度,最高可达冲击速度的1.6倍,冲击中后期微射流中部粒子反向运动向上凸起;壁面出现直径约8 μm、深约0.173 μm的微型凹坑,且其边缘处有材料塑性隆起,试验中材料表面出现微型凹坑群;冲击区域内由内而外等效应力先升高后降低,射流边缘附近冲击效应最强。从材料去除角度来看,大量微射流冲击对超声珩磨加工起到积极作用。
Abstract
To explore the effect of cavitation micro-jet impinging on the wall in ultrasonic honing, considering the elastic-plastic deformation of the wall, ultrasonic field and honing pressure field, the SPH-FEM coupled method was used to establish the model of cavitation micro jet impact and for numerical simulation, then an experiment validation was conducted, the results show: the speed of lateral jet formed in the process of micro-jet impact is higher than the impact velocity of micro-jet, up to 1.6 times, the central particles of micro-jet are reverse movement and upward bulge, a micro pit of diameter about 8 μm, depth about 0.173 μm appears on the wall, and material plastically uplift at the edge, micro dimple clusters arise on the material surface in the test; the equivalent stress first rises then reduces inside out within the impact area, the impact effect is the strongest near the edge of the jet. A large number of micro-jet impinging plays a positive role in the ultrasonic honing, from the perspective of material removal.
关键词
流体力学 /
微射流冲击 /
光滑粒子流体动力学 /
超声珩磨 /
声空化
{{custom_keyword}} /
Key words
fluid mechanics /
micro-jet impact /
Smoothed Particle Hydrodynamics /
ultrasonic honing /
acoustic cavitation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 祝锡晶.超声光整加工及表面成型技术[M].第一版.中国:中国科学文化出版社,2005: 9-13.
[2] 张敏,李晓谦,蒋日鹏,等.超声辐射杆振幅分布与空蚀区域[J].振动与冲击,2014, 33(13): 59-62.
ZHANG Min, LI Xiao-qian, JIANG Ri-peng, et al. Amplitude distribution and cavitation corrosion field of ultrasonic transducer system [J]. Journal of Vibration and Shock, 2014, 33(13): 59-62.
[3] 陈大融.空化与空蚀研究[J].中国基础科学,2010, 6: 3-7.
CHEN Da-rong. Cavitation and Cavitation Erosion [J]. China Basic Science, 2010, 6: 3-7.
[4] Li N, Zhou Q, Chen X, et al. Liquid drop impact on solid surface with application to water drop erosion on turbine blades, Part I: Nonlinear wave model and solution of one-dimensional impact [J]. International Journal of Mechanical Sciences, 2008, 50(10): 1526-1542.
[5] 孙龙泉,张忠宇,丁建军,等. 可压缩流体射流冲击平板的压力特性研究[J]. 振动与冲击,2013, 32(3): 178-181.
SUN Long-quan, ZHANG Zhong-yu, DING Jian-guo, et al. Pressure characteristics of panels subjected to collision of compressible jet [J]. Journal of Vibration and Shock, 2013, 32(3): 178-181.
[6] 穆朝民,韩靖.高压水射流冲击煤体的力学特征[J].爆炸与冲击,2015, 35(3): 442-448.
MU Chao-min, HAN Jing. Mechanical characteristics of high-pressure water jets impinging on coal [J]. Explosion and Shock waves, 2015, 35(3): 442-448.
[7] Luey L B. Numerical approach to testing of fission hypothesis [J]. ASTRONOMICAL JOURNAL, 1997, 82(12): 1013-1024
[8] Libersky L D, Petschek A G. Smoothed Particle Hydrodynamics with Strength of Materials [J]. Advances in the Free Lagrange Method, Lecture Notes in Physics, 1990, 395: 248-257.
[9] Johnson G R, Petersen E H, Stryk R A. Incorporation of an SPH option into the EPIC code for a wide range of high velocity impact computations [J]. International Journal of Impact Engineering, 1993, 14(1-4): 385-394.
[10] 马利,陶伟明,郭乙木,等.SPH耦合有限元方法的水射流弹塑性碰撞模拟[J].浙江大学学报(工学版),2008, 42(2): 259-263.
MA Li, TAO Wei-ming, GUO Yi-mu, et al. Elastic/plastic impact simulation of water jet using smoothed particle hydrodynamics and finite element method [J]. Journal of Zhejiang University (Engineering Science), 2008, 42(2): 259-263.
[11] 刘谋斌,宗智,常建忠.光滑粒子动力学方法的发展与应用[J].力学进展,2011, 41(2): 217-234.
LIU Mou-bin, ZONG Zhi, CHANG Jian-zhong. Developments and applications of smoothed particle hydrodynamics [J]. Advances in Mechanics, 2011, 41(2): 217-234.
[12] 王安文,徐绯,张岳青.SPH方法在液固撞击数值模拟中的应用[J].计算物理,2012, 29(4): 525-533.
WANG An-wen, XU Fei, ZHANG Yue-qing. SPH method in Numerical Simulation of Liquid-Solid Impact [J]. Chinese journal of computational physics, 2012, 29(4): 525-533
[13] Brujan E A, Ikeda T, Matsumoto Y. On the pressure of cavitation bubbles [J]. Experimental Thermal and Fluid Science, 2008, 32(5): 1188-1191.
[14] Hammitt. Mechanical Cavitation Damage Phenomena and Corrosion-fatigue [M]. Defense Technical Information Center, 1971.
[15] 李晓杰,张程娇,王小红,等. 水的状态方程对水下爆炸影响的研究[J]. 工程力学,2014, 31(8): 46-52.
LI Xiao-jie, ZHANG Cheng-jiao, WANG Xiao-hong, et al. Numerical study on the effect of equations of state of water on underwater explosions [J]. Engineering mechanics, 2014, 31(8): 46-52.
[16] 郭策,祝锡晶,王建青,等. 超声珩磨作用下两空化泡动力学特性[J]. 力学学报,2014, 46(6): 879-886.
GUO Ce, ZHU Xi-jing, WANG Jian-qing, et al. Dynamical behaviors of double cavitation bubbles under ultrasonic honing [J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 879-886.
[17] Ching-Yu Hsu, Cho-Chung Liang, Tso-Liang Teng, et al. A numerical study on high-speed water jet impact [J]. Ocean Engineering, 2013, 72: 98-106.
[18] 祝锡晶. 功率超声振动珩磨技术的基础与应用研究[D]. 南京:南京航空航天大学,2007.
ZHU Xi-jing. Foundation Research and Application Technology of the Power-Ultrasonic-Vibration Honing [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}