基于有限时间稳定理论的无刷直流电动机混沌振荡控制

汪慕峰1,韦笃取1,2,罗晓曙1, 张波2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (13) : 90-93.

PDF(1198 KB)
PDF(1198 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (13) : 90-93.
论文

基于有限时间稳定理论的无刷直流电动机混沌振荡控制

  • 汪慕峰1,韦笃取1,2 ,罗晓曙1, 张波2
作者信息 +

Controlling chaos in brushless DC motor based on finite-time stability theory

Author information +
文章历史 +

摘要

基于有限时间稳定理论和Lyapunov稳定性理论,设计一个非线性控制器,对无刷直流电动机(BLDCM)系统的混沌振荡进行控制。首先理论上证明了该控制策略能使混沌系统在有限时间内稳定到平衡点,然后利用数值仿真结果验证了该控制策略的正确性和有效性。研究结果对保证无刷直流电动机的稳定运行具有重要意义。
关键词:有限时间稳定理论,Lyapunov稳定性理论,混沌控制,无刷直流电动机

Abstract

In this paper, a nonlinear controller is designed to control chaos in BLDCM system based on finite-time stability and Lyapunov stability theory. Theoretical analysis proved that the control strategy can stabilize the chaotic system at the equilibrium point in a finite time. The numerical simulation results demonstrate the correctness and effectiveness of the proposed control strategy. The control strategy may have important implications for the stability operation of BLDCM in industrial automation manufacturing.
Keywords: finite-time stability theory, Lyapunov stability theory, chaos control, Brushless DC motor (BLDCM)

关键词

有限时间稳定理论
/ Lyapunov稳定性理论 / 混沌控制 / 无刷直流电动机

引用本文

导出引用
汪慕峰1,韦笃取1,2,罗晓曙1, 张波2. 基于有限时间稳定理论的无刷直流电动机混沌振荡控制[J]. 振动与冲击, 2016, 35(13): 90-93
Controlling chaos in brushless DC motor based on finite-time stability theory[J]. Journal of Vibration and Shock, 2016, 35(13): 90-93

参考文献

[1] Kuroe Y, Hayashi S. Analysis of bifurcation in power electronic induction motor drive systems[J]. 20th Annual IEEE Power Electronics Specialists Conference, 1989, 5: 923-930.
[2] 韦笃取,张波.基于无源性理论自适应镇定具有v/f输入的永磁同步电动机[J].物理学报, 2012, 61(3): 030505.
WEI Du-Qu, ZHANG Bo. Robust suppressing chaos in permanent magnet synchronous motor with v/f control based on passivity theory[J]. Acta Physica Sinica, 2012, 61(3): 030505.
[3] 韦笃取,张波,丘东元.基于LaSalle不变集定理自适应控制永磁同步电动机的混沌运动[J].物理学报,2009,58(9): 6026.
WEI Du-qu, ZHANG Bo, QIU Dong-yuan. Adaptive controlling chao s in permanent magnet synchronous motor based on the LaSalle theory[J]. Acta Physica Sinica, 2009, 58(9): 6026.
[4] 关广丰,王海涛,熊伟.随机振动功率谱再现自适应控制算法研究[J]振动与冲击, 2011, 30 (3): 1-4.
GUAN Guang-feng,WANG Hai-tao, XIONG Wei. Adaptive control of power spectral density replication of random vibration[J]. Journal of vibration and shock, 2011, 30 (3): 1-4.
[5] Wei Du-qu, Luo Xiao-shu. Passive adaptive control of chaos in synchronous reluctance motor[J]. Chinese Physics B, 2008,17(1): 92-97.
[6] 李健昌,韦笃取,罗晓曙,张波.混沌电机自适应时滞同步控制研究[J].振动与冲击, 2014, 33(16): 105-108.
LI Jian-chang, WEI Du-qu, LUO Xiao-shu, ZHANG Bo. Adaptive lag-synchronization of chaotic permanent magnet synchronous motors[J]. Journal of vibration and shock, 2014, 33(16): 105-108.
[7] Hemati N, Leu M C. A complete model characterization of brushless DC motors[J]. IEEE Trans. Ind. Appl., 1992, 28(1): 172-180.
[8] Hemati N. Strange attractors in brushless DC motor[J]. IEEE Trans Circuits Syst-I, Fundam. Theory Appl., 1994, 41(1): 40-45.
[9] Chau K T, Chen J H, Chan C C. Dynamic bifurcation in DC drives[J]. 28th Annual IEEE Power Electronics Specialists Conference, 1997, 2: 1330-1336.
[10] Chen J H, Chau K T, Chan C C. Analysis of chaos in current-mode-controlled dc drive systems[J]. IEEE Trans. Ind. Electron., 2000, 47(1): 67-76.
[11] Meng Z J, Sun C Z, An Y J, Yang H M, Hu Q. Controlling Chaos for BLDC Thruster Motor in Deepwater Robot Based on Fuzzy Control[C]. IEEE International Conference on Control and Automation, 2007: 712-715.
[12] Dadras S, Motallebzadeh F, Motallebzadeh F, Ozgoli S, Momeni R. Control of chaotic uncertain brushless dc motors [C]. IEEE International Conference on Control and Automation, 2009: 2143-2148.
[13] Roy P, Ray S, Bhattacharya S. Control of chaos in brushless DC motor design of adaptive controller following back-stepping method [C]. International Conference in Control, Instrumentation, Energy and Communication, 2014: 41-45.
[14] Ren H P, Chen G R. Control chaos in brushless DC motor via piecewise quadratic state feedback[J]. Lecture Notes in Computer Science, 2005, 3645:149-158.
[15] Aghababa M P, Aghababa H P. Chaos suppression of rotational machine systems via finite-time control method[J]. Nonlinear Dynamics, 2012, 69(4):1881-1888.
[16] Zhao H, Ma Y J, Liu S J, Gao S G, Zhong D. Controlling chaos in power system based on finite-time stability theory[J]. Chinese Physics B, 2011, 20(12): 120501.
[17] Wang H, Zhang X L, Wang X H, Zhu X J. Finite time chaos control for a class of chaotic systems with input nonlinearities via TSM scheme [J]. Nonlinear Dynamics, 2012, 69(4):1941-1947.
[18] Aghababa M P, Aghababa H P. Finite-time stabilization of uncertain non-autonomous chaotic gyroscopes with nonlinear inputs[J]. Applied Mathematics and Mechanics, 2012, 33(2):155-164.
[19] Guo R W. Finite-time stabilization of a class of chaotic systems via adaptive control method[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1): 255-262.
[20] Bhat S P, D. Bernstein D S. Finite-time stability of continuous autonomous systems[J]. SIAM J on Control and Optimization, 2000, 38(3):751-766.
[21] 丁世宏,李世华.有限时间控制问题综述[J].控制与决策, 2011, 26(2):161-169.
DING Shi-hong, LI Shi-hua. A survey for finite-time control problems[J]. Control and Decision, 2011, 26(2): 161-169.
[22] 高铁杠,陈增强,袁著祉•基于鲁棒有限时控制的混沌系统的同步[J].物理学报, 2005, 54 (6):2574-2579.
GAO Tie-gang, CHEN Zeng-qiang, YUAN Zhu-zhi. Robust finite time synchronization of chaotic systems[J]. Acta Phys Sin, 2005, 54(6):2574-2579.
[23] Wang H, Han Z Z, Xie Q Y, Zhang W.  Finite-time chaos control via nonsingular terminal sliding mode control[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(6):2728-2733.
[24] Wang H, Han Z Z, Xie Q Y, Zhang W. Finite-time chaos control of unified chaotic systems with uncertain parameters[J]. Nonlinear Dynamics, 2009, 55(4):323-328.

PDF(1198 KB)

510

Accesses

0

Citation

Detail

段落导航
相关文章

/