由D ' Alembert 原理,建立了轴向运动黏弹性变截面梁的运动微分方程,给出了一种重心有理插值DQ法的数值求解方法。对于简支黏弹性变截面梁,用该方法得到了特征方程,获得了变截面梁前两阶无量纲复频率与无量纲轴向运动速度的变化关系。分析了梯形截面梁和抛物形截面梁随轴向运动速度变化的失稳形式,并与等截面梁进行了比较,同时分析了变截面梁的高度比和黏弹性系数对梁动力稳定性的影响。
Abstract
The governing differential equation for axially moving viscoelastic beam with varying section is obtained based on the D ' Alembert principle, and a numerical method of local differential quadrature method based on gravity interpolation is given. For simply supported viscoelastic beam with varying section, the characteristic equation is obtained by using this method and the relation of the first two orders non-dimensional complex frequencies of the beam with non-dimensional axial movement speed are given. The form of instability of the viscoelastic beam with trapezoid cross section and parabolic cross section in different value of axial movement speed is analyzed in detail and compared with uniform beam. The effects of different height ratio and viscoelastic coefficient on the dynamic stability of the beam are discussed.
关键词
变截面梁 /
黏弹性 /
轴向运动 /
稳定性 /
DQ法 /
复频率
{{custom_keyword}} /
Key words
Variable Cross-section beam /
Viscoelasticity /
Axially moving /
Stability /
Differential quadrature method /
Complex frequency
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Mote C D Jr. A study of band saw vibration[J].Journal of the Franklin Institute,1965,279(6):430-444
[2] Mote C D Jr. On the non-linear oscillation of an axially moving string[J].Journal of Applied Mechanics,1966,33(2):463-464
[3] Mote C D Jr. Dynamic stability of axially moving materials.Shock and Vibration Digest,1972,4(4):2-11
[4] Chen L Q, Yang X D. Vibration and stability of an axially moving viscoelastic beam with hybrid supports[J]. Euro- pean Journal of Mechanics A/Solids, 2006, 25(6): 996-1008
[5] Yang X D, Chen L Q. Non-linear forced vibration of axially moving viscoelastic beams[J]. Acta Mechanic Solida Sinica, 2006, 19(4): 365-373
[6] Usik Lee, Joohong Kim, Hyungmi Oh. Spectral analysis for the transverse vibration of an axially moving Timoshenko beam[J]. Journal of Sound and Vibration, 2004, 271(3-5): 685-703
[7] 赵凤群,王忠民,陆小平. 轴向运动功能梯度Timoshenko梁的稳定性分析[J]. 振动与冲击,2014,33(2): 14-19
[7]ZHAO Feng-qun,WANG Zhong-min,LU Xiao-ping.Stability
analysis of axially moving Timoshenko beam made of functionally graded material[J]. Journal of Vibration and Shock, 2014,33(2):14-19
[8] Mergen H G, Marco A. Steady-state transverse response of an axially moving beam with time-dependent axial speed[J]. International Journal of Non-Linear Mechanics, 2013, 49 :40–49
[9] Mergen H G, Marco A. Nonlinear dynamics of axially moving viscoelastic beams over the buckled state[J]. Computers and Structures, 2012, 112–113:406–421
[10] Caruntu D. On nonlinear vibration of non-uniform beam with rectangular cross-section and parabolic thickness variation[M]. Solid Mechanics and its Applications. Kluwer Academic Publishers, Dordrecht, Boston, London, 2000:109 -118
[11] Mehmet C E, Metin A, Vedat T. Vibration of a variable cross-section beam [J].Mechanics Research Communica- tions, 2007, 34(1): 78-84
[12] 徐腾飞, 向天宇, 赵人达. 变截面Euler-Bernoulli 梁在轴力作用下固有振动的级数解[J]. 振动与冲击, 2007, 26( 11) : 99-101
[12] XU Teng-fei, XIANG Tian-yu, ZHAO Ren-da. Natural vibration series solution of variable cross-section Euler Bernoulli beam under the action of axial force[J]. Journal of Vibration and Shock, 2007,26( 11) : 99-101.
[13]Floater M S. ,Hormann K.Barycentric rational interpolation with no poles and high rates of approximation[J]. Numerische Mathematik, 2007, 107(2): 315-331
[14] 王波, 陈立群. 微分求积法处理轴向变速黏弹性梁混杂边界条件[J]. 振动与冲击, 2012, 31(5): 87-91
[14] WANG Bo, CHEN Li-qun Treating hybrid boundary condition of an axially accelerating viscoelastic beam via a differential quadrature scheme[J].Journal of Vibration and Shock,2012,31(5):87-91.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}