法兰盘螺栓松动是风机塔常见的一种严重病害。本文基于大量实测试验得出:塔筒的1阶相位差特性对法兰盘螺栓松动病害很敏感。首先对6座存在此病害的风机塔开展了详细的振动测试与分析,然后分析出法兰盘螺栓松动后,其1阶固有频率值未发生变化、阻尼比变化不明显、1阶振型变化也不突出,但在各法兰盘上、下盘之间的相位差即使在螺栓松动比例为6%时也存在明显的突变特性,而在对法兰盘螺栓重新紧固后,其相位差未表现出此特性。实测试验表明:相比其它振动特性,风机塔的1阶相位差特性受法兰盘螺栓松动的影响更明显,因此能更准确地反映出法兰盘螺栓松动现象,可基于法兰盘上、下盘之间的相位差绝对值是否存在突然增大的特性来识别出法兰盘螺栓是否存在较严重的松动病害。本文的研究结果是基于6座风机塔多个工况下的实测数据得出的,具有较高的可靠性,对风机塔的法兰盘螺栓松动病害的快速检测方法的研究具有较大的参考价值。
Abstract
The bolt looseness is a usual and serious disease of a wind turbine tower. Based on a large number of measurements, a conclusion was obtained that the first-order phase difference characteristic of a wind turbine tower is sensitive to its loose bolts of the flanges. Six wind turbine towers with loose bolts were measured and analyzed on their vibration parameters. After the bolts looseness, the variation of the first-order natural frequency was not found, the variation of its damping ratio and its first-order vibration mode were not obvious. At the same time, there were obvious sudden change in the phase difference of the upper and lower flanges despite the bolts looseness ratio was 6%. But the phase difference of the upper and lower didn’t show the sudden change after their fastening. The measurements show that the first-order phase difference characteristic of a wind turbine tower is more affected by its loose bolts of the flanges than other vibration characteristics. As a result, the first-order phase difference characteristic can express the bolts looseness of the flanges more accurately. The serious bolts looseness can be detected by the sudden increasing absolute values of the the phase difference of the upper and lower flanges. Based on the real measurements of the six wind turbine towers under different working conditions, the method in this paper is more reliable and more effective to detect the loosen bolts of a wind turbine tower rapidly.
关键词
风机塔 /
法兰盘螺栓松动 /
塔筒振动特性 /
相位差特性
{{custom_keyword}} /
Key words
wind turbine towers /
the loosen bolts of the flanges /
the vibration characteristics of the tower /
the characteristics of phase difference
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 魏泰,吴坤,黄军威. 风机塔筒螺栓防松检测技术[J]. 机械与电子,2013,(8):78-80.
WEI Tai, WU Kun, HUANG Jun-wei. Prevent Loosing Detection Technology of the Wind Turbines Tower Bolts [J]. Machinery & Electronics, 2013,(8):78-80.
[2] 李本立, 宋宪耕. 风力机结构动力学[M]. 北京:北京航空航天大学出版社, 1999.
LI Ben-li, SONG Xian-geng. Structural Dynamics of Wind Turbines[M]. Beihang University Press. 1999.
[3] 龚元明,吴长水.高强度螺栓试验与测试系统的开发[J].上海工程技术大学学报,2011,(25):27-30.
GONG Yuan-ming, WU Chang-shui. Development of Testing and Measuring System for High Strength Bolt [J]. Journal of Shanghai University of Engineering Science, 2011,(25):27-30.
[4] 缑百勇,陆秋海,王波等. 利用固有频率异常值分析法检测螺栓拧紧力[J]. 振动与冲击,2015 Vol. 34 (23): 77-82.
GOU Bai-yong, LU Qiu-hai, WANG Bo, et al. Bolt tightening force detection using outlier analysis of structural natural frequencies [J]. Journal of Vibration and Shock, 2015 Vol. 34 (23): 77-82.
[5] 余坚,谢寿生,任立通等.拉杆转子装配振动检测分形研究[J]. 振动与冲击,2014 Vol.33(14): 84-88.
YU Jian, XIE Shou-sheng, REN Li-tong, et al. Fractal research on the assembly vibration detection of rod fastening rotor [J]. Journal of Vibration and Shock, 2014 Vol.33(14): 84-88.
[6] 李允公,孔祥娜,高玉勇. 基于两被联件振动信号概率密度和PCA的螺栓松动识别方法研究[J]. 振动与冲击,2015 Vol. 34 (1): 63-67.
LI Yun-gong, KONG Xiang-na,GAO Yu-yong. Method for detecting bolt looseness based on probability density of vibration signals of two connected parts and principal component analysis [J]. Journal of Vibration and Shock, 2015 Vol.34 (1): 63-67.
[7] 李源,曾宇,陈昌林. 不同单元类型风机塔筒振动特性比较研究[J]. 东方电机,2012年第5期:43-46.
YI Yuan, ZENG Yu, CHEN Chang-lin. Comparison with the vibration characteristics of the different wind turbine towers [J]. Dongfang Electrical Machine, 2012(5):43-46.
[8] RACHID Y, ISMAIL E B, TRITSCH J B , et al. Dynamic study of a wind turbine blade with horizontal axis [J]. European Journal of Mechanics-A/Solids,2001, 20(2):216-225
[9] MURTAGH P J, BASU B, BRODERICK B M. Mode acceleration approach for rotating wind turbine blades[J].Journal of Multi-Body Dynamics,2001, 21(8):241-252
[10] P.J.Murtagh,B.Basu,B.M.Broderick.Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading [J].Engineering Structures,2005,27(8):1209-1219
[11] 刘贻雄. 大型风力机塔筒结构动力学与稳定性分析[D]. 兰州理工大学硕士论文. 2012.
LIU Yi-xiong. Structure Dynamic Analysis and Buckling Stability Analysis on Large Wind Turbine Tower[D]. Lanzhou University of Technology. 2012.
[12]Ren Wei-xin and G. D. Roeck. Structural damage identification using modal data. I: Simulation verification[J]. Journal of Structural Engineering. ASCE. 2002, 128(1): 87-95.
[13]Ren Wei-xin and G. D. Roeck. Structural damage identification using modal data.I: Test verification[j]. Journal of Structural Engineering. ASCE. 2002, 128(1): 96-104.
[14]朱正德,林湖. 基于螺栓装配技术中扭矩法与扭矩转角法比较与应用的研究[J]. 柴油机设计与制造学报,2005, 2(14):39-42.
Zhengde Zhu and Hu Lin. The research of torque method and torgue/rotation method[J]. Design & Manufacture of Diesel Engine. 2005, 2(14):39-42.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}