基于Kirchhoff薄板弯曲振动理论和波函数法Wave Based Method(WBM)理论,推导了运用WBM将附加弹簧阻尼结构转化为点激励的方法,构建了基于WBM计算含弹簧阻尼支承薄板振动响应的系统矩阵,得到了含弹簧阻尼支承的薄板弯曲振动响应。以四边简支矩形板为例,计算了50-600Hz频段内参考点的振动响应,并与解析法和有限元法的计算结果进行了对比。运用该方法对比计算了添加不同弹簧阻尼结构数与无弹簧阻尼结构时薄板在120Hz的弯曲振动响应。结果表明:通过将弹簧阻尼结构转换成点激励的方法,能有效的将WBM应用于附加弹簧阻尼支承薄板弯曲振动响应的仿真计算,与有限元法相比,有着更高精度和收敛速度。
Abstract
A wave based prediction technique for spring-damper plate is proposed based on the theory of Kirchhoff and Wave Based Method (WBM) via converting the additional spring – damper structure into a point force with the change of frequency and amplitude of displacement, the system matrix for computing the vibration response of the plate with a spring-damper is constructed on account of WBM, subsequently the bending vibration response of the pate is obtained. With a four edges simply supported rectangular plate as an example, the method is verified via the comparison with the vibration response of reference point at 50-600Hz implemented by analytic method and finite element method respectively. The vibration response of plate with different number of spring-damper structure is computed to find the effect of the adding structure. The analysis results indicates that WBM is valid on the prediction for bending vibration response of the spring -damp plate. Contrast with FEM, the WBM can achieve the mid-frequency bending vibration response of a spring -damp plate with higher accuracy and converge rate.
关键词
波函数法 /
弹簧-阻尼 /
弯曲振动 /
薄板
{{custom_keyword}} /
Key words
WBM /
spring –damper /
bending vibration /
plate
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Deraemaeker, I. Babuska, Ph. Bouillard, Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions [J]. Int. J. Numer. Methods Engrg. 46(1999) 471–499.
[2] O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, P. Nithiarasu, the Finite Element Method – Vol. 1: Basic Formulation and Linear Problems, Butterworth-Heinemann, 2005.
[3] O.C. Zienkiewicz, R.L. Taylor, the Finite Element Method – Vol. 2: Solid and Structural Mechanics, Butterworth-Heinemann, 2005.
[4] R. Lyon, R. DeJong, Theory and application of statistical energy analysis (2nd ed.), Butterworth Heinemann (1995).
[5] Despres, O.C.A.B., Application of an ultra-weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem [J]. In SIAM J. Numer. Anal. 1998. p. 255-299.
[6] V. Cotoni, P.J. Shorter, and R.S. Langley. Numerical and experimental validation of the hybrid finite element-statistical energy analysis method [J]. Journal of the Acoustical Society of America, pages 259–270, 2007.
[7] .Desmet, w., a wave based prediction technique for coupled vibro-acoustic analysis [D]. 1998, Leuven. 2053-2063.
[8] E. Perrey-Debain, J.T.P.B., Wave boundary elements: a theoretical overview presenting applications in scattering of short waves [J]. Eng. Anal. Bound. Elem, 2004. 28: 131–141.
[9] A. Carcaterra and A. Sestieri. Complex envelope displacement analysis: a quasi-static approach to vibrations [J]. Journal of Sound and Vibration, 1997.
[10] Suleau, P.B.A.S., Element-free Galerkin solutions for Helmholtz problems: Formulation and numerical assessment of the pollution effect [J]. Comput. Methods Appl. Mech. Eng., 1998. 162: p. 317-335.
[11] Eze, R.R.A.P., The variational theory of complex rays: A predictive tool for medium frequency vibrations [J]. Comput. Methods Appl. Mech. Eng., 2004. 28: 3301–3315.
[12] Vergote, K., et al., An efficient wave based approach for the time-harmonic vibration analysis of 3D plate assemblies [J]. Journal of Sound and Vibration, 2013. 332(8): 1930-1946.
[13] Deckers, E., et al., An efficient Wave Based Method for 2D acoustic problems containing corner singularities [J]. Computer Methods in Applied Mechanics and Engineering, 2012. 241-244: 286-301.
[14] Van Genechten, B., et al., An efficient Wave Based Method for solving Helmholtz problems in three-dimensional bounded domains [J]. Engineering Analysis with Boundary Elements, 2012. 36(1): 63-75.
[15] 杨念, 陈炉云,张裕芳, 基于波函数法的结构振动功率流研究. 振动与冲击, 2014(02): 173-177.
Yang Nian,Chen Luyun,Zhang Yufang. Wave based method for steady-state power flow analysis [J].Journal of Vibration and Shock. 2014(02): 173-177.
[16] 何雪松,黄其柏,胡 溧. WBM 法在薄板弯曲振动分析中的应用[J]. 华中科技大学学报(自然科学版),2008,36(7):97 -99.
HE Xue song, HUANG Qi bai, HU Li. Application of wave based method to plate bending vibration analysis [J].Huangzhong Univ. of Sci. &Tech. (Natural Science Edition), 2008, 36(7):97 -99.
[17] Peng Weicai, He Zeng, Li Peng, Wang Jiaqiang. A prediction technique for dynamic analysis of flat plates in the Mid-frequency Range. Acta Mechanica Solida Sinica, 2007, 20(4): 333-341
[18] A. Leissa, Vibration of plates, Acoustical Society of America, Woodbury (1993).
[19] L. Gavric, G. Pavic, A finite element method for computation of structural intensity by the normal mode approach [J], Journal of Sound and Vibration (1993), 164(1). pp. 29–43.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}