现代战争有征兆可察,通过预警放水不仅可以有效提高大坝的抗爆安全性能,同时能够减少大坝失事风险损失。基于显示动力分析平台,考虑爆炸高加载率下的混凝土应变率效应,建立水下爆炸条件下炸药-气体-库水-坝基-坝体全耦合动力分析模型,对比分析了正常蓄水位及死水位条件下混凝土重力坝水下爆炸毁伤破坏特征及抗爆安全性能;同时针对战时预警放水条件,分析不同库前水位下混凝土重力坝的动态响应特征、破坏发展过程及毁伤空间分布特征,全方位研究了库前水位对大坝抗爆安全性能的影响。结果表明:对于混凝土重力坝,随着库前水位的降低,坝体损伤破坏范围逐渐减小;当库前水位降低到大坝下游折坡以下时,大坝抗爆安全性能得到显著的提高。
Abstract
There are signs of modern wars, through the early warning discharge not only can effectively improve the antiknock safety performance of dams, but also can reduce the loss of dams failure risk. The strain rate effect under blast load is taken into consideration in the establishment of gravity dam fully coupled analysis model based on dynamic analysis platform. The damage characteristics and antiknock safety performance of concrete gravity dams subjected to underwater explosion shock loading in normal water level and dead water level were analyzed contrastively. The dynamic response characteristics, damage development process and the characteristics of spatial distribution of concrete gravity dams under different water level were analyzed for the early warning discharge condition at the same time. The results indicate that, for concrete gravity dam, with the reduction of water level before dam, damage range of dam decrease gradually, and that the antiknock safety performance of dam improved remarkably when the water level before dam below the change in downstream slope.
关键词
混凝土重力坝 /
库前水位 /
抗爆安全性能 /
全耦合模型 /
水下爆炸 /
损伤演化
{{custom_keyword}} /
Key words
concrete gravity dam /
water level before dams /
antiknock safety performance /
fully-coupled model /
underwater explosion /
damage evolution
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王高辉,张社荣,卢文波,等.水下爆炸冲击荷载下混凝土重力坝的破坏效应Ⅰ:冲击波传播特性及损伤机理[J].水利学报,2015,46(2).
WANG Gao-hui, ZHANG She-rong, LU Wen-bo, et al. Damage effects of concrete gravity dams subjected to underwater explosion I:Shock wave propagation characteristic and damage mechanism[J].Journal of Hydraulic Engineering, 2015,46(2).
[2] 张启灵,李波.高水位运行下近水面水下爆炸对拱坝结构的影响[J].应用力学学报,2013,30(2):153-160.
ZHANG Qi-ling, LI Bo. Impact on arch dam with a high reservoir level experiencing a near-surface underwater explosion shock loading[J].Chinese Journal of Applied Mechanics, 2013,30(2):153-160.
[3] Tian-tang Yu. Dynamical Response Simulation of Concrete Dam Subjected to Underwater Contact Explosion Load[J]. Computer Science and Information Engineering, 2009: 769-774.
[4] Herbert Linsbauer. Hazard potential of zones of weakness in gravity dams under impact loading conditions[J]. Frontiers of Architecture and Civil Engineering in China, 2011,5(1):90-97.
[5] 张社荣,王高辉,王超,等.水下爆炸冲击荷载作用下混凝土重力坝的破坏模式[J].爆炸与冲击,2012,32(5):502-507.
ZHANG She-rong, WANG Gao-hui, WANG Chao, et al. Failure mode analysis of concrete gravity dam subjected to underwater explosion[J].Explosion and Shock Waves, 2012,32(5):502-507.
[6] 张社荣,王高辉.水下爆炸冲击荷载作用下混凝土重力坝的抗爆性能[J].爆炸与冲击,2013,33(3):255-262.
ZHANG She-rong, WANG Gao-hui. Antiknock performance of concrete gravity dam subjected to underwater explosion[J]. Explosion and Shock Waves, 2013,33(3):255-262.
[7] LU Lu, LI Xin, ZHOU Jing. Protection Scheme for Concrete Gravity Dam Acting by Strong Underwater Shock Wave[J]. Advanced Science Letters,2013:238-243.
[8] Malvar L J, Ross C A. Review of strain rate effects for concrete in tension[J].ACI Materials Journal,1999,96(5):614-616.
[9] Riedel W, Thoma K , Hiermaier S, et al. Penetration of reinforced concrete by BETA2B2500 numerical analysis using a new macroscopic concrete model for hyd-rocodes [C]. 9th International Symposium, Interaction of the Effects of Munitions with Structures, Berlin-Strausberg: IBMAC, 1999:315-322.
[10] Holomquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjective to large strains, high strain rates, and high pressures[C]. Jackson N, Dickert S. The 14th International Symposium on Ballistics, USA: American Defense Prepareness Association, 1993:591-600.
[11] Johnson G R. Computed radial stresses in a concrete target penetrated by a steel projectile[C].Proceedings of the 5th International Conference On Structures under Shock and Impact.Greece,1998:793-806.
[12] ZHEN Guo-tu, YONG Lu. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations[J]. International Journal of Impact Engineering,2009,36:132-146.
[13] Livermore Software Technology Corporation. LS-DYNA keyword user’s manual[M]. California: Livermore Software Technology Corporation,2006 .
[14] Zamyshlyaev, Yakovlev. Dynamic loads in underwater explosion[M].Leningrad:Sudostroyeniye,1967.
[15] 范书立,陈明阳,陈健云,等. 基于能量耗散碾压混凝土重力坝地震损伤分析[J].振动与冲击,2011,30(4):271-275.
FAN Shu-li, CHEN Ming-yang, CHEN Jian-yun, et al. Seismic damage analysis of a concrete gravity dam based on energy dissipation[J]. Explosion and Shock Waves,2011,30(4):271-275.
[16] 崔杰,杨文山,李世铭,等.近自由面水下爆炸冲击波切断效应研究[J].船舶力学,2012,16(5):465-471.
CUI Jie, YANG Wen-shan, LI Shi-ming, et al. Research on the cutoff effect of shock wave induced by underwater explosion near free surface[J]. Journal of Ship Mechanics,2012,16(5):465-471.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}