计及应力刚化效应的空间大运动曲梁动力学建模与分析

张建书1,芮筱亭1,陈刚利1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (14) : 27-33.

PDF(1587 KB)
PDF(1587 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (14) : 27-33.
论文

计及应力刚化效应的空间大运动曲梁动力学建模与分析

  • 张建书1 ,芮筱亭1,陈刚利1
作者信息 +

Dynamics modeling and analysis of a spatial curved beam with stress stiffening

  • ZHANG Jian-shu1   RUI Xiao-ting1  CHEN Gang-li1
Author information +
文章历史 +

摘要

从连续介质力学非线性位移-应变关系出发,导出计入应力刚化效应的空间柔性梁变形能表达式。利用浮动框架有限元方法和哈密顿变分原理推导了满足小变形假设的空间曲梁的一般运动动力学方程,并利用模态缩减法对动力学方程进行了维数降阶。所推导的动力学方程可用于高速旋转一般运动空间柔性曲梁动力学问题的求解。通过数值仿真讨论了应力刚化效应对大范围运动小变形空间柔性曲梁动力学特性的影响,并与ADAMS软件和ABAQUS软件的仿真结果进行了对比,指出了ADAMS软件在高速旋转柔性多体系统数值计算方面的一些缺陷。所提出的计及应力刚化效应的空间曲梁动力学建模方法为高速旋转一般运动柔性多体系统动力学建模和分析提供了参考。

Abstract

Based on the nonlinear relationship between deformation and strain of elastic flexible bodies, the expression of the potential energy of spatial flexible beams is derived. The effect of stress stiffening is accounted for in the potential energy. The dynamics equation of a spatial curved beam undergoing large displacement and small deformation is deduced using the finite element method of floating frame of reference (FEMFFR) and Hamiltonian variation principle. The order of the dynamic model is reduced by using modal synthesis method. The stress stiffening effect of the curved beam on the system dynamics is accounted for in the deduction procedure, which makes it applicable to the dynamic simulation of multi-flexible-body system with high rotational speed. The effect of stress stiffening is numerically analyzed using the deduced dynamics equations. The simulation results are compared with those obtained from the software of ADAMS and ABAQUS, which shows some defects of the commercial dynamics software. The proposed modeling method for the dynamics of a spatial curved beam with stress stiffening effect will lay a foundation for the modeling and analysis of high speed rotary multi-flexible-body system dynamics under small deformation using FEMFFR.

关键词

空间曲梁 / 浮动框架有限元方法 / 高速旋转 / 应力刚化

Key words

a spatial curved beam / the finite element method of floating frame of reference / high rotational speed / stress stiffening

引用本文

导出引用
张建书1,芮筱亭1,陈刚利1. 计及应力刚化效应的空间大运动曲梁动力学建模与分析[J]. 振动与冲击, 2016, 35(14): 27-33
ZHANG Jian-shu1 RUI Xiao-ting1 CHEN Gang-li1. Dynamics modeling and analysis of a spatial curved beam with stress stiffening[J]. Journal of Vibration and Shock, 2016, 35(14): 27-33

参考文献

[1] Ahamd A. Shabana. Dynamics of multibody systems[M]. The fourth edition. Cambridge University Press, 2013.
[2] 张雄,王天舒. 计算动力学[M]. 北京:清华大学出版社,2011.
Zhang Xiong, Wang Tian-shu. Computational dynamics[M]. Beijing: Tsinghua University Press,2011.
[3] Craig R., and Hale A.. Review of Time Domain and Frequency Domain Component Mode Synthesis Methods[J]. International Journal of Analytical and Experimental Modal Analysis, 1987, 2(2): 59–72.
[4] Andreas Heckmann. On the choice of boundary conditions for mode shapes in flexible multibody systems[J]. Multibody System Dynamics, 2010, 23: 141–163.
[5] 范纪华, 章定国. 旋转柔性悬臂梁动力学的Bezier插值离散方法研究[J]. 物理学报, 2014, 63(15).
Fan Ji-hua, Zhang Ding-guo. Bezier interpotation method for the dynamics of rotating flexible cantilever beam[J]. ACTA PHYS. SIN. 2014, 63(5).
[6] Bassam A. Hussein,Ahmed A. Shabana. Sparse matrix implicit numerical integration of the Stiff differential/algebraic equations: Implementation [J]. Journal of Nonlinear Dynamics. 2011, 65:369–382.
[7] Wallrapp O., Schwertassek R. Representation of geometric stiffening in multibody system simulation[J]. International Journal for Numerical Methods in Engineering, 1991, 32: 1833-1850.
[8] Oskar Wallrapp, Simon Wiedemann. Comparison of results in flexible mulitbody dynamics using various approaches[J]. Journal of Nonlinear Dynamics, 2003, 34:189-206
[9] 方建士, 章定国. 考虑集中质量的旋转悬臂梁的动力学建模与频率分析[J]. 机械科学与技术, 2011, 30(9).
Fang Jian-shi, Zhang Ding-guo. Dynamic Modeling and Frequency Analysis of a Rotating Cantilever Beam with a Concentrated Mass [J]. Journal of Mechanical Science and Technology for Aerospace Engineering, 2011, 30(9).
[10] 姚学诗, 陈江, 郑春龙. 基于旋转软化的柔性梁动力学研究[J]. 应用力学学报, 2014, 31(4).
Yao Xue-shi, Chen Jiang, Zheng Chun-long. Dynamics of flexible beams based on spin softening [J]. CHINESE JOURNAL OF APPLIED MECHANICS, 2014, 31(4).
[11] 杨辉, 洪嘉振, 余征跃. 动力刚化问题的实验研究[J]. 力学学报, 2004, 36(1).
Yang Hui, Hong Jia-zhen, Yu Zheng-yue. Experimental investigation on dynamic stiffening phenomenon[J]. ACTA MECHANICA SINICA, 2004, 36(1).
[12] 洪嘉振, 尤超蓝. 刚柔耦合系统动力学研究进展[J]. 动力学与控制学报, 2004, 2(2).
Hong Jia-zhen, You Chao-lan. Advances in dynamics of rigid-flexible coupling system[J]. Journal of dynamics and control, 2004, 2(2).
[13] 蔡国平,洪嘉振.旋转运动柔性梁的假设模态方法研究[J].力学学报, 2005, 37(1).
Cai Guo-ping, Hong Jia-zhen. Assumed Mode Method of a Rotating Flexible Beam [J]. ACTA MECHANICA SINICA, 2005, 37(1).
[14] 章定国, 余纪邦. 作大范围运动的柔性梁的动力学分析[J].振动工程学报, 2006, 19(4).
Zhang Ding-guo, Yu Ji-bang. Dynamical analysis of a flexible cantilever beam with large overall motions [J]. Journal of Vibration Engineering, 2006, 19(4).
[15] 刘铸永,洪嘉振. 中心刚体一柔性梁系统的耦合变形影响[J].力学季刊, 2009, 30(1).
Liu Zhuy-ong, Hong Jia-zhen. Coupling deformation effect on flexible hub-beam system [J]. Chinese Quarterly of Mechanics, 2009, 30(1).
[16] 和兴锁,李雪华,邓峰岩. 平面柔性梁的刚-柔耦合动力学特性分析与仿真[J]. 物理学报, 2011, 60(2).
He Xing-suo, Li Xue-hua, Deng Feng-yan. Analysis and Imitation of Dynamic Properties for Rigid-Flexible Coupling Systems of a Planar Flexible Beam [J]. ACTA PHYS. SIN, 2011, 60(2).
[17] 赵飞云, 贺寅彪, 谢永诚, 等. 基于初应力法的作大范围运动柔性梁动力学建模理论研究[J]. 力学季刊, 2007, 28(1).
Zhao Fei-yun, He Yin-biao, Xie Yong-cheng, et al. Study on dynamic modeling of flexible beams undergoing large overall motion based on initial stresses method [J]. CHINESE QUARTERLY OF MECHANICS, 2007, 28(1).
[18] Peter Hansbo, Mats G Larson, Karl Larsson. Variational formulation of curved beams in global coordinates [J]. Comput Mechanics, 2014, 53: 611–623
[19] S.Rajasekaran. Analysis of curved beams using a new differential transformation based curved beam element [J]. Meccanica, 2014, 49: 863–886
[20] 徐圣, 刘锦阳, 余征跃. 几何非线性空间梁的动力学建模与实验研究[J]. 振动与冲击, 2014, 33(21).
Xu Sheng, Liu Jin-yang, Yu Zheng-yue. Dynamic modeling and tests for a geometric nonlinear spatial beam[J]. JOURNAL OF VIBRATION AND SHOCK, 2014, 33(21).

PDF(1587 KB)

Accesses

Citation

Detail

段落导航
相关文章

/