利用GPU强大的并行计算能力,开发了一种结构非线性有限元静力、动力分析的高精度和高效率分析平台HSNAS(GPU)。为了验证所开发平台的计算精度和效率,分别对反复荷载作用下的钢筋混凝土构件层次和整体结构层次的拟静力试验以及典型框架结构的振动台试验进行模拟。结果表明HSNAS(GPU)平台得到的计算结果与试验结果吻合较好,该平台能较好地模拟构件轴力-弯矩-剪力的多维耦合效应以及刚度和强度退化等非线性行为,求解精度较高。与传统CPU计算平台相比,HSNAS(GPU)平台显示出12-14倍以上的加速效率。鉴于GPU的巨大计算潜能空间,所开发的计算平台为工程应用中大规模梁柱结构非线性有限元分析提供了高精度和高效率的分析手段。
Abstract
A simulation platform HSNAS(GPU) of nonlinear static and dynamic analysis based on the parallel computing ability of GPU was developed. In order to verify the precision and efficiency of the HSNAS(GPU), static cyclic loading tests and a shaking table test of reinforced concrete (RC) columns and frames were simulated using the platform HSNAS(GPU). The results of HSNAS(GPU) show a good agreement with the results of tests. Considering strength/stiffness degradation and coupling effect of axial force, shear, and bending, the complicated nonlinear behavior of RC columns could be simulated effectively and precisely. The speedups of the static and dynamic analysis using the developed platform HSNAS(GPU) achieves 12-14 times compared with traditional serial platform. Based on exploiting the potential of GPU computation, the platform HSNAS(GPU) could provide one scenario with high accuracy and efficiency for large-scale nonlinear analysis of reinforced concrete frames.
关键词
钢筋混凝土 /
非线性分析 /
滞回性能 /
地震响应 /
加速比
{{custom_keyword}} /
Key words
reinforced concrete /
nonlinear analysis /
hysteretic behaviors /
earthquake responses /
speedup
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Barreiro A, Crespo A J C, Domínguez J M, et al. Smoothed particle hydrodynamics for coastal engineering problems [J]. Computers & Structures. 2013, 120: 96-106.
[2] Chetverushkin B N, Shilnikov E V, Davydov A A. Numerical simulation of the continuous media problems on hybrid computer systems [J]. Advances in Engineering Software, 2013, 60-61: 42-47.
[3] Bryan B A. High-performance computing tools for the integrated assessment and modelling of social-ecological systems[J]. Environmental Modelling & Software, 2013, 39: 295-303.
[4] 刘小虎, 胡耀国, 符伟. 大规模有限元系统的GPU加速计算研究[J]. 计算力学学报, 2012, 29(1): 146-152.
LIU Xiao-hu, HU Yao-guo, FU Wei. Solving large finite element system by GPU computation [J]. Chinese Journal of Computational Mechanics, 2012, 29(1): 146-152.
[5] 李红豫, 滕军, 李祚华. 基于CPU-GPU异构平台的高层结构地震响应分析方法研究[J]. 振动与冲击, 2014, 33(13): 86-91.
LI Hong-yu, TENG Jun, LI Zuo-hua. Analysis method for seismic response of high-rise structure based on CPU-GPU heterogeneous platform [J]. Journal of Vibration and Shock, 2014, 33(13): 86-91.
[6] Spacone E. Flexibility-based finite element models for the nonlinear static and dynamic analysis of concrete frame structures [D]. University of California, Berkeley 1994.
[7] 张舒, 褚艳利. GPU高性能运算之CUDA[M]. 北京:中国水利水电出版社,2009.
[8] Tanaka H, Park R. Effect of lateral confining reinforcement on the ductile behavior of reinforced concrete columns [R]. Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, 1990.
[9] Saatcioglu M, Grira M. Confinement of reinforced concrete columns with welded reinforcement grids [J]. ACI Structure Journal, 1999, 96(1): 29-39.
[10] Ono A, Shirai N, Adachi H, et al. Elasto-plastic behavior of reinforced concrete column with fluctuating axial force [J]. Transactions of the Japan Concrete Institute, 1989, 11.
[11] Nagasaka, T. Effectiveness of steel fiber as web Reinforcement in reinforced concrete columns [J]. Transactions of the Japan Concrete Institute, 1982, 4.
[12] Ohue M, Morimoto H, Fujii S, et al. The behavior of RC short columns failing in splitting bond-shear under dynamic lateral loading [J]. Transactions of the Japan Concrete Institute, 1985, 7.
[13] Arakawa T, Arai Y, Mizoguchi M, et al. Shear resisting behavior of short reinforced concrete columns under biaxial bending-shear [J]. Transactions of the Japan Concrete Institute, 1989, 11.
[14] 徐云扉, 胡庆昌, 陈玉峰, 等. 低周反复荷载下两跨三层钢筋混凝土框架受力性能的试验研究[J]. 建筑结构学报, 1986, 7(2): 1-16.
XU Yun-fei, HU Qing-chang, CHEN Yu-feng, et al. The experimental study of the behavior of a two-bay three-story R.C. frame under cyclic loading [J]. Journal of Building Structures, 1986, 7(2): 1-16.
[15] 吕西林, 李培振, 陈跃庆. 12 层钢筋混凝土标准框架振动台模型试验的完整数据[R]. 同济大学土木工程防灾国家重点实验室振动台试验室, 2004.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}