[1] 黄正祥, 张先锋, 陈惠武等. 药型罩锥角对聚能杆式侵彻体成型的影响[J]. 南京理工大学学报, 2005, 29(6): 645-657.
HUANG Zhengxiang, ZHANG Xianfeng, CHEN Huiwu et al. Influence on Formed Mechanism of Jetting Projectile Charge by Liner Angle. Journal of Nanjing University of Science and Technology, 2005, 29(6): 645-657.
[2] 曹丽娜. 聚能射流和破甲过程数值模拟方法的研究[D]. 长春: 长春工业大学, 2010.
[3] E Perez, D Fauquignon and P Chanteret. Fundamental studies of shaped charge mechanisms. Proc 3rd Intern Symp on Ballistics, Germany, 1977.
[4] 初文华. 处理非连续问题的三维SPH算法及其在冲击动力学问题中的应用[D]. 哈尔滨工程大学博士学位论文, 哈尔滨工程大学, 2013.
[5] 贾鑫, 黄正祥, 祖旭东等. 聚能装药垂直侵彻橡胶复合装甲的变形研究[J]. 工程力学, 2013, 30(2): 451-457.
JIA Xin, HUANG Zheng-xiang, ZU Xu-dong et al. Research on deformation of rubber composite armor against shaped charge vertical penetration[J]. Engineering Mechanics 30 (2013): 451-457.
[6] G R Liu, M B Liu. Smoothed particle hydrodynamics: A meshfree particle method[D]. World Scientific Pub. Co. Inc., 01 Dec, 2003.
[7] 郑平泰, 杨涛, 秦子增. 聚能射流形成过程的理论建模与分析[J]. 国防科技大学学报, 2006, 28(3): 28-32.
ZHENG Ping-tai, YANG Tao, QIN Zi-zeng. Theoretical modeling and analysis of the formation process of shaped charge jet[J]. Journal of National University of Defense Technology[J], 2006, 28(3): 28-32.
[8] J F Molinari. Finite element simulation of shaped charges[J]. Finite Elements in Analysis and Design, 2002, 38: 921-936.
[9] D L Feng, M B Liu, H Q Li et al. Smoothed particle hydrodynamics modeling of linear shaped charge with jet formation and pene-tration effects[J]. Computers & Fluids, 2013, 86: 77-85.
[10] M B Liu, G R Liu, Z Zong et al. Computer simulation of high explosive explosion using smoothed particle hydrodynamics method-ology[J]. Computers & Fluids, 2003, 32: 305–322.
[11] 温万治, 恢寿榕, 赵衡阳等. 聚能装药侵彻钢板全过程的数值模拟[J]. 爆炸与冲击, 2001, 21(2): 126 -130.
WEN Wan-zhi, HUI Shou-rong, ZHAO Heng-yang et al. Numerical Simulation for Penetration of a Steel Slab by a Shaped Charge[J]. Explosion and Shock Waves, 2001, 21(2): 126-130.
[12] 张先锋, 陈惠武. 三种典型聚能射流侵彻靶板数值模拟[J]. 系统仿真学报, 2007 19(19): 4399-4410.
ZHANG Xian-feng, CHEN Hui-wu. Computional Study of Three Typical Shaped Charge Jets[J]. Journal of System Simulation, 2007 19(19): 4399-4410.
[13] 李 磊, 沈兆武, 李学岭等. SPH方法在聚能装药射流三维数值模拟中的应用. 爆炸与冲击. 2012, 32(3): 316-322.
LI Lei, SHEN Zhao-wu, L-Ii Xue-ling et al. Application of SPH method to numerical simulation of shaped charge jet. [J]. Explosion and Shock Waves, 2012, 32(3): 316-322.
[14] A M Zhang, W S Yang, X L Yao. Numerical simulation of underwater contact explosion. Applied Ocean Research, 2012, 34:10-20.
[15] A M Zhang, W S Yang, C Huang et al. Numerical Simulation of Column Charge Underwater Explosion Based on SPH and BEM Combination. Computers & Fluids, 2013, 71:169-178.
[16] A M Zhang, F R Ming, S P Wang. Coupled SPHS-BEM method for transient fluid–structure interaction and applications in under-water impacts. Applied Ocean Research, 2013, 43: 223-233.
[17] Z F Zhang, F R Ming, A M Zhang. Damage Characteristics of Coated Cylindrical Shells Subjected to Underwater Contact Explo-sion. Shock and Vibration, 2014.
[18] B M Dobratz. LLNL Explosive Handbook. UCRL-52997, Lawrence Livermore National Laboratory, Livermore, CA. 1981.
[19] Y S Shin, M Lee, K Y Lam et al. Modeling mitigation effects of water shield on shock waves [J]. Shock and Vibration, 1998, 5:225-234.
[20] L D Libersky, P W Randles, T C Carney et al. High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. Journal of Computational Physics, 1993, 109: 67-75.
[21] G R Johnson, W H Cook. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, pp. 541–547, 1983.
[22] 廖海平. 聚能侵彻体对双层反应装甲的冲击起爆 [D]. 南京理工大学硕士学位论文, 南京理工大学, 2003.