基于SPH-FEM方法的半球形聚能装药破甲特性研究

张之凡1 李兵2 王龙侃1 张阿漫1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (14) : 71-76.

PDF(1997 KB)
PDF(1997 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (14) : 71-76.
论文

基于SPH-FEM方法的半球形聚能装药破甲特性研究

  • 张之凡1   李兵2  王龙侃1  张阿漫1
作者信息 +

Penetration characteristics of hemispherical shaped charge based on SPH-FEM method

  • ZHANG Zhi-fan 1  LI Bing 2  WANG Long-kan1  ZHANG A-man1
Author information +
文章历史 +

摘要

为了研究杆式射流的形成及破甲过程,基于SPH-FEM方法建立半球形聚能装药模型,对半球形聚能装药起爆后形成金属射流及射流穿透双壳的过程进行仿真模拟。通过对射流形成过程、速度衰减规律以及壳体破口形成过程进行分析,得到以下结论:在半球形聚能装药的爆轰作用下,药型罩被高压冲击变形继而形成了高速的金属射流;射流头部最大速度可达约4174 m/s ;射流在击穿双壳的过程中会发生断裂形成射流断裂块,第一层壳在被击穿过程中,经历了冲塞、凹陷等过程,第二层壳直接被射流穿透,之后不断地被射流断裂块击穿。整个计算对半球形聚能装药的工程设计具有一定的参考价值。

Abstract

In order to investigate the formation of Rod-liked Jet and the penetration properties, a SPH-FEM model of hemispherical shaped charge is established in this paper to simulate the formation of metal jet and its pene-tration onto double-shells. The results are given based on the analysis of the formation of shaped charge jet, velocity and crevasse. It shows that a metal jet with a high speed is generated after the liner gets deformation under the detona-tion of shaped charge; the maximum velocity of jet head reaches about 4174 m/s; after the first layer of shells is pene-trated by the jet, it experiences plug failure, dent and petaling etc. In addition, the jet breakup is generated before the jet penetrates the second layer of shells and the initial crevasse occurs. The calculation and analysis above may be helpful for the application to design the shaped charge.

 

关键词

半球形聚能装药 / SPH-FEM方法 / 射流 / 破甲

Key words

hemispherical shaped charge / SPH-FEM / metal jet / penetration

引用本文

导出引用
张之凡1 李兵2 王龙侃1 张阿漫1. 基于SPH-FEM方法的半球形聚能装药破甲特性研究[J]. 振动与冲击, 2016, 35(14): 71-76
ZHANG Zhi-fan 1 LI Bing 2 WANG Long-kan1 ZHANG A-man1. Penetration characteristics of hemispherical shaped charge based on SPH-FEM method[J]. Journal of Vibration and Shock, 2016, 35(14): 71-76

参考文献

[1] 黄正祥, 张先锋, 陈惠武等. 药型罩锥角对聚能杆式侵彻体成型的影响[J]. 南京理工大学学报, 2005, 29(6): 645-657.
HUANG Zhengxiang, ZHANG Xianfeng, CHEN Huiwu et al. Influence on Formed Mechanism of Jetting Projectile Charge by Liner Angle. Journal of Nanjing University of Science and Technology, 2005, 29(6): 645-657.
[2] 曹丽娜. 聚能射流和破甲过程数值模拟方法的研究[D]. 长春: 长春工业大学, 2010.
[3] E Perez, D Fauquignon and P Chanteret. Fundamental studies of shaped charge mechanisms. Proc 3rd Intern Symp on Ballistics, Germany, 1977.
[4] 初文华. 处理非连续问题的三维SPH算法及其在冲击动力学问题中的应用[D]. 哈尔滨工程大学博士学位论文, 哈尔滨工程大学, 2013.
[5] 贾鑫, 黄正祥, 祖旭东等. 聚能装药垂直侵彻橡胶复合装甲的变形研究[J]. 工程力学, 2013, 30(2):  451-457.
JIA Xin, HUANG Zheng-xiang, ZU Xu-dong et al. Research on deformation of rubber composite armor against shaped charge vertical penetration[J]. Engineering Mechanics 30 (2013): 451-457.
[6] G R Liu, M B Liu. Smoothed particle hydrodynamics: A meshfree particle method[D]. World Scientific Pub. Co. Inc., 01 Dec, 2003.
[7] 郑平泰, 杨涛, 秦子增. 聚能射流形成过程的理论建模与分析[J]. 国防科技大学学报, 2006, 28(3): 28-32.
ZHENG Ping-tai, YANG Tao, QIN Zi-zeng. Theoretical modeling and analysis of the formation process of shaped charge jet[J]. Journal of National University of Defense Technology[J], 2006, 28(3): 28-32.
[8] J F Molinari. Finite element simulation of shaped charges[J]. Finite Elements in Analysis and Design, 2002, 38: 921-936.
[9] D L Feng, M B Liu, H Q Li et al. Smoothed particle hydrodynamics modeling of linear shaped charge with jet formation and pene-tration effects[J]. Computers & Fluids, 2013, 86: 77-85.
[10] M B Liu, G R Liu, Z Zong et al. Computer simulation of high explosive explosion using smoothed particle hydrodynamics method-ology[J]. Computers & Fluids, 2003, 32: 305–322.
[11] 温万治, 恢寿榕, 赵衡阳等. 聚能装药侵彻钢板全过程的数值模拟[J]. 爆炸与冲击, 2001, 21(2): 126 -130.
WEN Wan-zhi, HUI Shou-rong, ZHAO Heng-yang et al. Numerical Simulation for Penetration of a Steel Slab by a Shaped Charge[J]. Explosion and Shock Waves, 2001, 21(2): 126-130.
[12] 张先锋, 陈惠武. 三种典型聚能射流侵彻靶板数值模拟[J]. 系统仿真学报, 2007 19(19): 4399-4410.
ZHANG Xian-feng, CHEN Hui-wu. Computional Study of Three Typical Shaped Charge Jets[J]. Journal of System Simulation, 2007 19(19): 4399-4410.
[13] 李 磊, 沈兆武, 李学岭等. SPH方法在聚能装药射流三维数值模拟中的应用. 爆炸与冲击. 2012, 32(3): 316-322.
LI Lei, SHEN Zhao-wu, L-Ii Xue-ling et al. Application of SPH method to numerical simulation of shaped charge jet. [J]. Explosion and Shock Waves, 2012, 32(3): 316-322.
[14] A M Zhang, W S Yang, X L Yao. Numerical simulation of underwater contact explosion. Applied Ocean Research, 2012, 34:10-20.
[15] A M Zhang, W S Yang, C Huang et al. Numerical Simulation of Column Charge Underwater Explosion Based on SPH and BEM Combination. Computers & Fluids, 2013, 71:169-178.
[16] A M Zhang, F R Ming, S P Wang. Coupled SPHS-BEM method for transient fluid–structure interaction and applications in under-water impacts. Applied Ocean Research, 2013, 43: 223-233.
[17] Z F Zhang, F R Ming, A M Zhang. Damage Characteristics of Coated Cylindrical Shells Subjected to Underwater Contact Explo-sion. Shock and Vibration, 2014.
[18] B M Dobratz. LLNL Explosive Handbook. UCRL-52997, Lawrence Livermore National Laboratory, Livermore, CA. 1981.
[19] Y S Shin, M Lee, K Y Lam et al. Modeling mitigation effects of water shield on shock waves [J]. Shock and Vibration, 1998, 5:225-234.
[20] L D Libersky, P W Randles, T C Carney et al. High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. Journal of Computational Physics, 1993, 109: 67-75.
[21] G R Johnson, W H Cook. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, pp. 541–547, 1983.
[22] 廖海平. 聚能侵彻体对双层反应装甲的冲击起爆 [D]. 南京理工大学硕士学位论文, 南京理工大学, 2003.
 

PDF(1997 KB)

739

Accesses

0

Citation

Detail

段落导航
相关文章

/