5A06铝合金力学性能测试及其平板抗水下冲击动态响应分析

任鹏1,田阿利1,张伟2 黄威2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (14) : 77-82.

PDF(2033 KB)
PDF(2033 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (14) : 77-82.
论文

5A06铝合金力学性能测试及其平板抗水下冲击动态响应分析

  • 任鹏1,田阿利1,张伟2,黄威2
作者信息 +

Mechanical property tests and dynamic response analysis for 5A06 aluminum alloy plates subjected to underwater shock loading

  • REN Peng1, Tian A-li1 , ZHANG Wei2, HUANG Wei2
Author information +
文章历史 +

摘要

通过万能实验机和分离式霍普金森拉杆分别获得了5A06铝合金材料在25 ºC~250 ºC范围内的准静态及常温高应变率下的拉伸应力-应变曲线。基于实验结果,对Johnson-Cook本构模型中的温度软化项进行了修改,进而拟合得到了修改后的本构模型参数。利用动力学有限元软件AUTODYN-2D的Euler- Lagrange耦合算法,结合力学性能实验所得到的5A06铝合金本构模型,对水下冲击波作用下5A06铝合金平板的动态响应历程进行了数值仿真,仿真结果与实验结果吻合良好,证明了材料模型及其参数的有效性。进而获得了铝合金平板在水下冲击波作用下的动态响应特性。

Abstract

The mechanical properties and dynamic constitutive relation of 5A06 aluminium alloy material were investigated in this study. The quasi-static and dynamic uniaxial tension experiments were conducted at the temperature ranging from 25  C to 250º C by using a universal testing machine and a split Hopkinson tension bar. As a result, the mechanical behavior of 5A06 aluminium alloy under different temperatures and strain rates was obtained. Based on the experimental results, the temperature softening item of the Johnson-Cook strength model was modified and the material constants were calibrated by a combination of experimental tests and numerical simulations with the finite element software AUTODYN-2D. Finally, the dynamic response histories of 5A06 aluminum alloy plates subjected to underwater shock loading were investigated by using numerical simulations. The results of numerical calculation agreed well with the test results. It was shown that the numerical calculation model is reasonable and reliable. Finally, the dynamic responding characteristics of 5A06 aluminum alloy plates subjected to underwater shock loading were investigated by using numerical simulations.
 

关键词

固体力学 / 5A06铝合金 / 力学性能 / Johnson-Cook本构模型 / 动态响应

Key words

solid mechanics;5A06 aluminium alloy / mechanical properities / Johnson-Cook constitutive relation / dynamic response

引用本文

导出引用
任鹏1,田阿利1,张伟2 黄威2. 5A06铝合金力学性能测试及其平板抗水下冲击动态响应分析[J]. 振动与冲击, 2016, 35(14): 77-82
REN Peng1, Tian A-li1,ZHANG Wei2,HUANG Wei2. Mechanical property tests and dynamic response analysis for 5A06 aluminum alloy plates subjected to underwater shock loading[J]. Journal of Vibration and Shock, 2016, 35(14): 77-82

参考文献

[1]  Kazemahvazi S, Radford D, Deshpande V S, et al. Dynamic failure of clamped circular plates subjected to an underwater shock [J]. Journal of Mechanics of Materials and Structures, 2007,2(10): 2007-2023.
[2]  Mukai T, Kawazoe M, Higashi K. Strain rate dependence of mechanical properties in AA5056 Al-Mg alloy processed by equal channel angular extrusion[J]. Materials Science & Engineering: A, 1998,247(1-2):270-274.
[3]  Kawazoe M, Shibata T, Mukai T, et al. Elevated temperature mechanical properties in  AA5A06 Al-Mg alloy processed by equal channel angular extrusion[J]. Scripta Materialia, 1997,36(6): 699-705.
[4]  赵月红,林乐耘. 不同加工及表面处理状态LF6铝镁合金的深海腐蚀性为[J].中国有色金属学报,2001,11(S1):27-31.
ZHAO Yue-hong,LIN Le-yun.Corrosion behaviors of LF6 Al-Mg alloy with different processing and surface treatment in deep seawater[J].The Chinese Journal of Nonferrous Metals,2011,11(Sup1):27-31.
[5]  王礼立,胡时胜. 铝合金LF6R和纯铝L4R在高应变率下的动态应力应变关系[J].固体力学学报,1986,(5): 2-10.
WANG Li-li, HU Shi-sheng. Dynamic stress-strain relations of Al alloy LF6R and Al L4R under high strain rates[J]. Acta Mechanica Solida Sinaca, 1986, (2): 2-10. (in Chinese)
[6]  林木森,庞宝君,张伟,等. 5A06铝合金的动态本构关系实验[J].爆炸与冲击,2009,29(3): 306-311.
LIN Mu-sen, PANG Bao-jun, ZHANG Wei, et al. Experimental investigation on a dynamic constitutive relationship of 5A06 Al alloy [J]. Explosion and Shock Wave, 2009,29(3): 306-311. (in Chinese)
[7]  张伟,魏刚,肖新科.2A12铝合金本构关系和失效模型[J]. 兵工学报,2013, 34(3): 276-282.
    ZHANG Wei, WEI Gang, XIAO Xin-ke. Constitutive relation and fracture criterion of 2A12 aluminum alloy [J]. Acta Armamentarii, 2013, 34(3): 276-282.
[8]  刘富,张嘉振,童明波,等. 2024-T3铝合金动力学实验及其平板鸟撞动态响应分析[J].振动与冲击,2014,33(4): 113-118.
    LIU Fu, ZHANG Jia-zhen, TONG Ming-bo, et al. Dynamic tests and bird impact dynamic response analysis for a 2024-T3 aluminum alloy plate[J]. Journal of Vibration and Shock, 2014, 33(4): 113-118.
[9]  Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temeratures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48.
[10] 郭子涛.弹体入水特性及不同介质条件金属靶的抗侵彻性能研究[D]. 黑龙江:哈尔滨工业大学, 2012. 64-66.
    GUO Zi-tao. Research on characteristics of projectile water entry and ballistic resistance of targets under different donditions[D]. Heilongjiang: Harbin Institute of Technology, 2012. 64-66.
[11] Jovan T, Robert K, Vili P, et al. Flow and fracture behavior of high-strength armor steel PROTAC 500[J]. Materials and Design, 2015, 66(5): 37-45.
[12] Ren P, Zhang W, Guo, Z T, et al. Numerical simulation for deformation of multi-layer steel plates under underwater impulsive loading[J]. Journal of Harbin Institute of Technology, 2012, 19(2): 99-103.
[13] Latourte F, Wei X D, Espinosa H D, et al. Design and identification of high performance steel alloys for structures subjected to underwater impulsive loading[J]. International Journal of Solids and Structures, 2012, 49: 1573-1587.
 

PDF(2033 KB)

Accesses

Citation

Detail

段落导航
相关文章

/