为了减少爆炸冲击环境下某防护型车辆内的乘员损伤,对车辆底部结构与座椅系统进行多参数优化。优化过程中,利用多物质单元与流-固耦合算法仿真乘员损伤,并通过试验标定。以乘员小腿受力、颈部力矩为目标函数,以车辆底部结构的厚度、材料、座椅安装位置为设计参数,建立了底部结构及座椅系统的优化数学模型。引入多元统计学的降维技术,形成了基于因子分析的多参数优化方法,在满足精度的条件下,合理缩减参数样本空间,节省了计算成本。通过该算法得到了优化模型的帕累托解集,最终获得了减小乘员损伤的底部结构与座椅系统设计方案。
Abstract
In order to reduce vehicle occupant injury under blast wave, a multi-parameter optimization is proposed for the vehicle hull underbody structure and occupant restraint system. The simulation of the occupant response is based on Arbitrary Lagrange-Eulerian and Fluid-solid Interaction methods, which is calibrated by explosion test. The optimization mathematical model of occupant's leg force and neck bending moment has been established, and the thickness, material and location of vehicle underbody and occupant restraint system are set as design variables. In this paper, a dimension reduction technique, namely, Factor Analysis based Multi-parameter Optimization, is exploited to cut down the sample space of optimization mathematical model precisely and reasonable. The Pareto set of optimization model is calculated by the proposed methodology, which could get the design scheme of vehicle underbody configuration and occupant restraint system for minimizing occupant injury.
关键词
车辆底部构型 /
抗爆炸冲击 /
多参数优化 /
因子分析 /
乘员损伤
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李红勋, 谭柏春, 贾楠, 等. 美军战术轮式车辆发展策略研究[J]. 军事交通学院学报, 2012, 14(10): 84-87.
Li Hong-xun, Tan Bai-chun, et al. Research on US Military Tactic Wheeled Vehicle Strategy[J]. Journal of Military Transportation University, 2012, 14(10): 84-87.
[2] K. P. Dharmasena, Haydn N. G. Wadley, Zhengyu Xue. Hutchinson. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamie loading[J]. International Journal of Impact Engineering, 2008, 35(9): 1063~1074.
[3] 白志海,蒋志刚,严波等. 金属加筋板局部爆炸冲击荷载研究[J]. 振动与冲击, 2011, 30(12): 93-97.
Bai Zhi-hai, Jiang Zhi-gang, Yan Bo. Localized blast loading of a stiffened metal plate[J]. Journal of Vibration and Shock, 2011, 30(12): 93-97.
[4] M. Fatt, L. Palla. Analytical Modeling of composite Sandwich Panels under Blast Loads[J]. Journal of Sandwich Structures and Materials, 2009, 11(4): 357–380.
[5] 李利莎,谢清粮,郑全平, 等. 基于Lagrange, ALE和SPH算法的接触爆炸模拟计算[J].爆破,2011,28(1).
Li Li- sha, XIE Qing- liang, et al. Numerical Simulation of Contact Explosion based on Lagrange ALE and SPH[J]. BLASTING, 2011,28(1).
[6] Fang, H., et al. A comparative study of metamodeling methods for multiobjective crashworthiness optimization [J].
Computers and Structures, 2005, 83: 2121–2136.
[7] M . Shariyat, P. Djamshidi. Minimizing the engine -induced harshness based on the DOE method and sensitivity analysis of the full vehicle NVH model[J]. International Journal of Automotive Technology, 2009, 10(6): 687~696.
[8] Houcem Eddine Mechri , Alfonso Capozzoli, Vincenzo Corrado. USE of the ANOVA approach for sensitive building energy design[J]. Applied Energy. 2010, 87:3073~3083.
[9] Apley D, Liu J, Chen W (2006) Understanding the effects of model uncertainty in robust design with computer experiments. ASME J Mech Des 128:945–958.
[10] Yang RJ, Wang N, Tho CH, Bobineau JP (2005) Metamodeling development for vehicle frontal impact simulation. ASME J Mech Des 127(5):1014–1020.
[11] HFM-090 Task Group 25. TR-HFM-090, Test Methodology for Protection of Vehicle Occupants against Anti-Vehicular Landmine Effects[S]. RTO/NATO,2007:A1~I18.
[12] J.MAJ. NSA/0533-LAND/4569, Protection Levels for Occupants of Logistic and Light Armored Vehicles[S]. 2004:1~B1.
[13] 孙艳馥, 王欣. 爆炸冲击波对人体损伤与防护分析[J]. 火炸药学报, 2008, 31(4): 50-53.
Sun Yan-fu, Wang Xin. Analysis of Human Body Injury Due to Blast Wave and Protection Method[J]. chinese journal of explosives& propellants, 2008, 31(4): 50-53.
[14] AEP-55, Volume 2, procedures for evaluating the protection level of logistic and light armoured vehicles[S]. 2006:1~F6.
[15] Chowdhury R, Rao B N, Meher P A. High dimentional modelrepresentation for reliab representation for reliability analysis[J].Communication in Numerical Method in Engineering, 2009, 25:301.
[16] Das I, Dennis J E. Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems[J]. Siam Journal on Optimization,1998, 8(3):631–657.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}