直升机旋翼/机身动力反共振隔振器的优化设计

李园园1,陈国平1,王轲1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (15) : 115-121.

PDF(1381 KB)
PDF(1381 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (15) : 115-121.
论文

直升机旋翼/机身动力反共振隔振器的优化设计

  • 李园园1,陈国平1,王轲1
作者信息 +

The optimization design of power anti-resonance isolator for helicopter rotor / fuselage

  • LI Yuanyuan1   CHEN Guoping1  WANG Ke1
Author information +
文章历史 +

摘要

为提高直升机旋翼/机身反共振隔振器的隔振效率,对直升机主减隔振系统进行了优化设计。通过灵敏度分析,确定了以前后柔性梁的厚度和配重的密度作为优化设计变量,接着采用遗传算法对隔振效率和配重动能进行优化,考虑到仿真模型直接调用优化算法的计算效率较低问题,建立了基于响应面方法的优化近似模型。结果表明:优化后模型的某一阶反共振频率与激励频率一致,配重振动加大,力传递率下降,隔振效率大幅度提高。优化设计提高了动力反共振隔振器的隔振性能,可以为直升机隔振器的设计提供一定的指导。

Abstract

To improve the isolation efficiency of helicopter rotor / fuselage anti-resonance isolator, optimization for the isolation system has been accomplished. The thickness of the front and rear flexible beam and counterweight density are determined as the design variables through sensitivity analysis, and then the isolation efficiency and counterweight kinetic energy are optimized using genetic algorithms. Taking into account the low computational efficiency that simulation models direct call the optimization algorithm problem, a surrogate model built by response surface is established. The results show that: A certain anti-resonance frequency is consistent with the excitation frequency, counterweight vibration increasing, force transmission rate decreasing and vibration isolation efficiency is greatly improved after optimization. Optimization design improves the power isolator anti-resonance isolation performance and can provide some guidance for the design of helicopter vibration isolators.

关键词

直升机 / 反共振隔振器 / 响应面 / 优化设计

Key words

Helicopter / Anti-resonance isolator / Response surface / Optimization

引用本文

导出引用
李园园1,陈国平1,王轲1. 直升机旋翼/机身动力反共振隔振器的优化设计[J]. 振动与冲击, 2016, 35(15): 115-121
LI Yuanyuan1 CHEN Guoping1 WANG Ke1. The optimization design of power anti-resonance isolator for helicopter rotor / fuselage[J]. Journal of Vibration and Shock, 2016, 35(15): 115-121

参考文献

[1] Phuriwat A. I. Semi-active control of helicopter vibration using controllable stiffness and damping device[D]. United States:The Pennsylvania State University, 2002. 
[2] Ganguli R. Optimum design of a helicopter rotor for low vibration using aeroelastic analysis and response surface methods[J]. Journal of Sound and Vibration, 2002, 258(2):327-344.
[3] Cheung Y. L, Wong W. O. Design of a non-traditional dynamic vibration absorber[J]. Journal of the Acoustical Society of America, 2009, 126(2): 564-567.
[4] Flannelly W. G. The dynamic anti-resonant vibration solator [C]//Proc of 22nd Annual AHS National Forum. Washingten DC, 1966: 152-160.
[5] 顾仲权. 动力反共振隔振[J]. 噪声与振动控制, 1989, 12(6):36-40.
    Gu Zhongquan. Power anti-resonance isolation[J]. Noise and Vibration Control, 1989, 12(6):36-40.
[6] 李五洲. 反共振隔振装置隔振原理分析[J]. 直升机技术, 2004, 8(1):6-8.
     Li Wuzhou. The isolation principle analysis on anti-resonance isolator[J]. Helicopter Technology, 2004, 8(1):6-8.
[7] 黄传跃, 郭光海, 李祖钊. 一种新型旋翼/机身隔振装置及性能分析[J]. 振动工程学报, 1999, 12(3): 403-409.
   Huang Chuanyue, Guo Guanghai, Li Zuzhao. A new rator/fuselage vibration isolator and its characteristic analysis[J]. Journal of Vibration Engineering, 1999, 12(3): 403-409.
[8] 邓旭东, 刘勇. 橡胶弹性扭矩管式动力反共振隔振器性能分析[J]. 第26届全国直升机年会学术论文集, 2010.
    Deng Xudong, Liu Yong. the Performance analysis of power anti-resonance isolation for rubber elastic torque tube[J]. The 26th annual meeting of the National Helicopter papers set, 2010.
[9] Joseph T. S. Helicopter gearbox isolation using periodically layered fluidic isolators [D]. United States:The Pennsylvania State University, 2003.
[10] Yilmaz C, Kikuchi N. Analysis and design of passive band-stop filter-type vibration isolation for low-frequency application [J]. Journal of Sound and Vibration, 2006, 291: 1004-1028.
[11] 王铁, 赵震, 陈峙, 王景新. 某车架结构基于灵敏度分析的优化设计[J]. 机械科学与技术, 2013, 32(4), 545-550.
    Wang Tie, Zhao Zhen, Chen Zhi, Wang Jingxin. Optimization of the dump truck frame structure based on the sensitivity analysis [J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(4), 545-550.
[12] 邬广铭, 史文库, 刘伟等. 基于模态灵敏度分析的客车车身优化[J]. 振动与冲击, 2013, 32(3), 41-45.
    Wu Guangming, Shi Wenku, Liu Wei etc.. Structural optimization of a light bus body-in-white based on modal sensitivity analysis[J]. Journal of Vibration and Shock, 2013, 32(3), 41-45.
[13] 荣安琪. 重型卡车驾驶室模态灵敏度分析与结构优化[D]. 长春:吉林大学, 2009.
    Rong anqi, Modal sensitivity analysis and structural optimization of the cab of heavy-duty truck[D]. Chang Chun: Jilin University, 2009.
[14] 蒋荣超, 王登峰, 吕文超等. 基于Kriging模型的驾驶室悬置系统多目标优化[J]. 农业机械学报, 2014.
Jiang Rongchao, Wang Dengfeng, Lv Wenchao etc.. Multi-objective Optimization of Cab Suspension Based on Kriging Model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014.
[15] 何成, 陈国平, 何欢. 基于全局近似函数的薄壁结构耐撞性多目标优化[J]. 南京航空航天大学学报, 2012, 44(4): 472-477.
    He Cheng, Chen Guoping, He Huan. Multi-Objective Optimazation of Thin-Walled Structures Crashworthiness Based on Global Approxinate Function[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2012, 44(4): 472-477.

PDF(1381 KB)

Accesses

Citation

Detail

段落导航
相关文章

/