一种新的相关机械振源盲分离方法

于 刚,周以齐1,张卫芬2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (15) : 216-221.

PDF(1673 KB)
PDF(1673 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (15) : 216-221.
论文

一种新的相关机械振源盲分离方法

  • 于  刚 ,周以齐1,张卫芬2
作者信息 +

Blind source separation of correlated vibration sources

  • Yu Gang1, Zhou Yiqi1, Zhang Weifen2
Author information +
文章历史 +

摘要

针对传统盲源分离算法在机械振源不满足统计独立特性时,无法有效分离出振源信号的问题,提出了基于信号稀疏特性的相关机械源盲分离方法。盲源分离算法的关键在于准确地估计出混合矩阵。因此,首先提出了不相关源混合矩阵的估计方法;然后针对相关源,提出了有效剔除相关成分的方法,使得剩余信号可以按照不相关源进行处理。通过理论分析、仿真验证以及实测数据分析,验证了该方法的有效性。

Abstract

The conventional blind source separation (BSS) method, such as independent component analysis (ICA), is restricted to separate the correlated sources. However most vibration sources generated in different structure are correlated, which will result into the failure of ICA. So we propose a new BSS method which is capable of separating correlated sources. It is divided into two steps. Firstly, it is needed to remove the correlated component, and then the reminder component can be regarded as uncorrelated sources to process. Theoretical analysis, simulation and experiment are employed to validate the effectiveness of the proposed method.
 

关键词

盲源分离 / 振动源 / 相关源

Key words

blind source separation / vibration sources / correlated sources

引用本文

导出引用
于 刚,周以齐1,张卫芬2. 一种新的相关机械振源盲分离方法[J]. 振动与冲击, 2016, 35(15): 216-221
Yu Gang1, Zhou Yiqi1, Zhang Weifen2. Blind source separation of correlated vibration sources[J]. Journal of Vibration and Shock, 2016, 35(15): 216-221

参考文献

[1]  Hyvärinen A, Oja E. Independent component analysis: algorithms and applications[J]. Neural networks, 2000, 13(4): 411-430.
[2]  Gelle G, Colas M, Delaunay G. Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis[J]. Mechanical Systems and Signal Processing, 2000, 14(3): 427-442.
[3]  Peled R, Braun S, Zacksenhouse M. A blind deconvolution separation of multiple sources, with application to bearing diagnostics[J]. Mechanical Systems and Signal Processing, 2005, 19(6): 1181-1195.
[4]  Kerschen G, Poncelet F, Golinval J C. Physical interpretation of independent component analysis in structural dynamics[J]. Mechanical Systems and Signal Processing, 2007, 21(4): 1561-1575.
[5] Yang Y, Nagarajaiah S. Output-only modal identification with limited sensors using sparse component analysis[J]. Journal of Sound and Vibration, 2013, 332(19): 4741-4765.
[6] 周晓峰, 杨世锡, 甘春标. 相关机械振源的盲源分离方法[J]. 振动与冲击, 2010, 31(14): 60-63.
Zhou Xiaofeng, Yang Shixi, Gan Chunbiao. Blind source separation of statistically correlated sources[J]. Journal of Vibration and Shock, 2012,31(14):60-63.
[7] 孟宗, 蔡龙. 基于EEMD子带提取相关机械振动信号单通道盲源分离[J]. 振动与冲击, 2014 33(20): 40-46.
Meng Zong, Cai Long. Blind source separation of single-channel statistically correlated mechanical vibration signals based on subband extraction of EEMD[J]. Journal of Vibration and Shock, 2014 33(20) 40-46.
[8] Reju V G, Koh S N, Soon I Y. An algorithm for mixing matrix estimation in instantaneous blind source separation[J]. Signal Processing, 2009, 89(9): 1762-1773.
[9] Dong T, Lei Y, Yang J. An algorithm for underdetermined mixing matrix estimation[J]. Neurocomputing, 2013, 104(15): 26-34.

PDF(1673 KB)

Accesses

Citation

Detail

段落导航
相关文章

/