基于网格搜索法优化最大相关峭度反卷积的滚动轴承早期故障诊断方法

吕中亮 1,2,汤宝平 1,周忆 1,孟杰2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (15) : 29-35.

PDF(2548 KB)
PDF(2548 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (15) : 29-35.
论文

基于网格搜索法优化最大相关峭度反卷积的滚动轴承早期故障诊断方法

  • 吕中亮 1,2 , 汤宝平 1,周忆 1,孟杰2
作者信息 +

Rolling Bearing Early Fault Diagnosis Based on Maximum Correlated Kurtosis Deconvolution Optimized by Grid Search Algorithm

  •  LV Zhong-liang 1,2   TANG Bao-ping 1  ZHOU Yi 1   MENG Jie2
Author information +
文章历史 +

摘要

针对环境噪声下滚动轴承早期故障信号微弱难以检测的问题,提出了基于网格搜索法优化最大相关峭度反卷积(Maximum correlated Kurtosis deconvolution, MCKD)滚动轴承早期故障诊断方法。并针对MCKD方法受滤波器阶数和周期影响的问题,提出了利用网格搜索法优化最大相关峭度反卷积参数。首先,早期微弱故障信号集成经验模态分解后,采用相关系数以及峭度准则重构原信号;然后,以Shannon熵作为目标函数采用网格搜索法搜寻最优滤波器阶数以及周期,采用自适应MCKD方法对重构信号中故障脉冲冲击成分进行加强,最后通过包络谱、包络功率谱提取微弱故障特征。实验表明,该方法能够对早期微弱故障中冲击成分进行自适应增强,有效检测出被噪声淹没的微弱故障,实现滚动轴承故障的精确诊断。

Abstract

A rolling bearing early fault diagnosis method based on Maximum Correlated Kurtosis Deconvolution (MCKD) Optimized by Grid Search Algorithm was proposed, aiming at the environmental noise of rolling bearing early fault signals of weak difficult test problems. The MCKD method Optimized by Grid Search Algorithm was proposed, aiming at the problem that the effect of the MCKD method was subject to order of the filter and the period. Firstly, ensemble empirical mode decompose was used to decompose the early week fault signal, and the signal reconstruction was selected by the correlation coefficient and the kurtosis criterion. Then, Grid Search which select Shannon entropy as its objective function was used to search for the influencing parameters of MCKD algorithm: the order of the filter and the period. And then the impulses component in the signal reconstruction was enhanced by the adaptive MCKD. At last, the week fault characteristics was extracted by the spectrum envelope and the Hilbert power spectrum. The result shows that this method can not only enhance the impulses component in the early fault signal, but also efficiently extract the week fault information and realize the precise fault diagnosis of rolling bearing. 
 

关键词

最大相关峭度反卷积 / 网格搜索法 / 早期故障诊断 / 滚动轴承

Key words

 MCKD / grid search / early fault diagnosis / rolling bearing

引用本文

导出引用
吕中亮 1,2,汤宝平 1,周忆 1,孟杰2. 基于网格搜索法优化最大相关峭度反卷积的滚动轴承早期故障诊断方法[J]. 振动与冲击, 2016, 35(15): 29-35
LV Zhong-liang 1,2 TANG Bao-ping 1 ZHOU Yi 1 MENG Jie2. Rolling Bearing Early Fault Diagnosis Based on Maximum Correlated Kurtosis Deconvolution Optimized by Grid Search Algorithm[J]. Journal of Vibration and Shock, 2016, 35(15): 29-35

参考文献

[1] BIN G F, GAO J J, LI X J, et al. Early fault diagnosis of rotating machinery based on wavelet packets-empirical mode  Decomposition feature extraction and neural network[J]. Mechanical System and Signal Processing,2012, 27:696-711.
[2] MING Y, CHEN J,DONG G M, et al. Weak fault feature Extraction  of rolling bearing based on cyclic Wiener filter and envelope spectrum[J]. Mechanical System and Signal        Processing,2011,25:1773-1785.
[3] QIU H, JAY L,LIN J, et al. Wavelet filter-based weak  Signature detection method and its application on rolling  bearing element bearing prognostics[J].Journal of Sound and  Vibration,2006,289:1066-1090.
[4] 周智,朱永生,张优云,等. 基于EEMD和共振解调的滚动轴承自适应故障诊断[J].振动与冲击,2013,32(2):76-80.
    ZHOU Zhi, ZHU Yong-sheng, ZHANG You-yun,et al. Adaptive fault diagnosis of rolling bearings based on EEMD and demodulated resonance[J]. Journal of Vibration and Shock, 2013,32(2):76-80.
[5] 王宏超,陈 进,動广明,等. 基于快速kurtogram算法的共振解调方法在滚动轴承故障特征提取中的应用[J].振动与冲击,2013,32(1):35-38.
    WANG Hong-chao, CHEN Jin, DONG Guang-ming, et al. Application of resonance demodulation in rolling bearing fault feature extraction based on fast computation of kurtogram[J].Journal of Vibration and Shock, 2013, 32(1). 35-58.
[6] 曾庆虎,邱 静,刘冠军,等. 基于小波相关滤波包络分析的早期故障特征提取方法[J].仪器仪表学报,  2008,29(4).729-733.
Zeng QING-hu, Qiu Jing, Liu Guan-jun, et al. Approach to extraction of incipient fault features based on wavelet correlation filter and envelope analysis[J]. Chinese Journal of Scientific Instrument,2008,29(4).729-733.
[7] Geoff  L.McDonald, Qing Zhao, Ming J.Zuo. Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection[J].Mechanical Systems and Signal Processing,2012,33:237-255.
[8] 陈宇,白征东. 基于多极值网格搜索法的快速影像匹配技术研究[J]. 测绘通报,2010,4:28-30.
    CHEN Yu,BAI Zheng-dong. Research on Fast Image   Matching Based on Multi-extreme Grid Search Method.  Bulletin of Surveying and Mapping,2010,4:28-30.
 [9] 蒋永华,汤宝平,刘文艺,等. 基于参数优化Morlet小波变换的故障特征提取方法[J]. 仪器仪表学报,  2010,31(1).56-60.
    JIANG Yong-hua,  TANG Bao-ping,  LIU Wen-yi, et al. Feature extraction method based on parameter optimized Morlet wavelet transform[J]. Chinese Journal of Scientific Instrument, 2010,31(1).56-60.
[10] 程发斌,汤宝平,钟佑明. 基于最优Morlet小波和SVD的滤波消噪方法及故障诊断的应用[J]. 振动与冲击,2008,27(2).91-94.
        CHEN Fa-bin, TANG Bao-ping, Zhong You-ming. Ade-nosing method based on optimal morlet wavelet and singular value decomposition and its application in fault diagnosis[J]. Journal of Vibration and Shock, 2008,27(2).91-94.
[11] Bearing Data Center, Case Western Reserve  Univ., Cleveland ,OH.[Online].Available:http://www.eecs.case.edu/laboratory/bearing.
[12] 胡爱军,马万里,唐贵基. 基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法[J]. 中国电机工程学报,2012,32(11):106-111.
    HU Ai-jun, MA Wan-li, TANG Gui-ji. Rolling Bearing Fault Feature Extraction Method Based on Ensemble Empirical Mode Decomposition and Kurtosis Criterion[J]. Proceedings of the CSEE,2012,32(11):106-111.

PDF(2548 KB)

Accesses

Citation

Detail

段落导航
相关文章

/