对于一类含有时间项的高维非线性动力学系统,提出了实现混沌预测同步的控制方法。在混沌同步的基础上,建立了派生系统及差别方程,从理论上证明了提出的方法能够实现对于原非线性系统的预测同步。对于耦合项进行了简化,为了实现长时间的预测,建立了多级同步系统来延长预测同步时间。对于Duffing系统,以及含反馈单摆系统在混沌状态下进行了仿真计算,证明了提出的方法是正确的与有效的。
Abstract
For a class of high dimension nonautonomous dynamical systems, the control method to realize anticipated synchronization of chaos is presented. Based on chaos synchronization, the derived system and difference equation for anticipated synchronization are set up. It is proved that the control method can make the response of derived system to be identical with that of the original system in future of seconds theoretically. Furthermore, the coupling terms are simplified. To make the anticipation time longer, the multi-layer derived systems are set up and coupled with each other. The Duffing system and a pendulum with feedback are simulated to validate the theoretical analysis. The simulation results proved that the presented method is correct and effective.
关键词
混沌 /
预测同步 /
动力学系统
{{custom_keyword}} /
Key words
chaos /
anticipated synchronization /
dynamical system
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]. Pecora L M,Carroll T L. Synchronization in chaotic systems[J]. Phys. Rev. Lett.,1990, 64(8): 821.
[2]. 过榴晓,徐振源. 关于非线性系统两类广义混沌同步存在性研究[J]. 物理学报,2008, 57(10): 6086.
GUO Liu-xiao, XU Zhen-yuan,. The existence of two types of generalized synchronization of nonlinear systems[J]. Acta Phys. Sin. 2008, 57(10): 6086.(in Chinese)
[3]. 张 檬,吕 翎,吕 娜, 等. 结构与参量不确定的网络与网络之间的混沌同步[J]. 物理学报,2012,61(22):508.
ZHANG Meng, LV Ling, LV Na, et al. Chaos synchronization between complex networks with uncertain structures and unknown parameters[J]. Acta Phys. Sin. 2012, 61(22): 508.(in Chinese)
[4]. Wang X, Song J. Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun Nonlinear Sci Numer Simulat[J], 2009, 14:3351-3357
[5]. Wang X, Zhang X, Ma C. Modified projective synchronization of fractional-order chaotic systems via active sliding mode control. Nonlinear Dyn[J], 2012, 69:511–517
[6]. 黄丽莲, 齐雪. 基于自适应滑模控制的不同维分数阶混沌系统的同步[J]. 物理学报,2013,62(8):507.
HUANG Li-lian, QI Xue. The synchronization of fractional order chaotic systems with diferente orders based on adaptive sliding mode control[J]. Acta Phys. Sin. 2013, 62(8): 507.(in Chinese)
[7]. Lin D, Wang X, Nian F, Zhang Y, Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems. Neurocomputing[J], 2010, 73: 2873–2881
[8]. Lin D, Wang X, Self-organizing adaptive fuzzy neural control for the synchronization of uncertain chaotic systems with random-varying parameters. Neurocomputing[J], 2011, 74: 2241–2249
[9]. Voss H U. Anticipating chaotic synchronization[J]. Phys. Rev. E. 2000,61:5115.
[10]. Wei H, Li L. Estimating parameters by anticipating chaotic synchronization[J]. Chaos, 2010,20:023112.
[11]. Yan H, Wei P, Xiao X. General anticipating response in coupled dynamical systems[J]. Chaos, 2009,19:023122.
[12]. Pyragas K, Pyragienė T. Coupling design for a long-term anticipating synchronization of chaos[J]. Phys. Rev. E, 2008, 78:046217.
[13]. Pyragiene T, Pyragas K, Anticipating synchronization in a chain of chaotic oscillators with switching parameters. Physics Letters A, 2015, 379: 3084–3088
[14]. Mayo C, Mirasso C R, Tora R. Anticipated synchronization and the predict-prevent control method in the FitzHugh-Nagumo model system[J]. Phys. Rev. E, 2012, 85:056216
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}