[1] Gorman D J. Free vibration analysis of rectangular plates[M]. New York: Elsevier North Holland, 1982.
[2] Lin C C. Stability and vibration characteristics of axially moving plates[J]. International Journal of Solids and Structures, 1997, 34(24): 3179-3190.
[3] Shin Changho, Chung Jintai, Kin Wonsuk. Dynamic characteristics of the out-of-plane vibration for an axially moving membrane [J]. Journal of Sound and Vibration, 2005, 286(4-5): 1019-1031.
[4] Zhou Yin-feng, Wang Zhong-min. Transverse vibration characteristics of axially moving viscoelastic plate[J]. Applied Mathematics and Mechanics, 2007, 28(2): 209-218.
[5] Ruan Miao, Wang Zhong-min, Wang Yan. Dynamic stability of functionally graded materials skew plates subjected to uniformly distributed tangential follower forces[J]. Journal of Vibration and Control, 2012, 18(7): 913-923.
[6] Hossain Nezhad Shirazi A, Qwji H R, Rafeeyan M. Active vibration control of an FGM rectangular plate using fuzzy logic controllers[C]. Procedia Engineering, 2011, 14: 3019-3026.
[7] 贺容波, 郑世杰. 光电层合简支板的多模态最优模糊主动振动控制. 振动与冲击,2015, 34(10): 77-81, 106.
HE Rong-bo,ZHENG Shi-jie. Multi-modal optimal fuzzy active vibration control of a photo-electric laminated simplysupported plate. Journal of' Vibration and Shock, 2015, 34(10): 77-81, 106.
[8] 浦玉学,张方,姜金辉. 变步长自适应结构振动主动控制算法. 振动与冲击,2015, 34(8):199-205.
PU Yu-xue,ZHANG Fang,JIANG Jin-hui. A varying step adaptive algorithm for structural vibration active control. Journal of' Vibration and Shock, 2015, 34(10): 199-205.
[9] 李国豪. 关于斜交异性斜板的弯曲理论[J]. 同济大学学报, 1997, 25(2) : 121-126.
LI Guo-hao. On the Bending theory of skew anisotropic skew plate[J]. Journal of Tongji University, 1997, 25(2): 121-126.
[10] 纪冬梅, 胡毓仁. 小波加权残值法在斜板后屈曲上的应用[J]. 应用力学学报, 2008, 25(4): 673-677.
JI Dong-mei, HU Yu-ren. Wavelet weighted residuals with application to post-buckling analysis of skew plates[J]. Chinese Journal of Applied Mechanics, 2008, 25(4): 673-677.
[11] 黎振源, 夏桂云, 李传习. 简支斜板的车—桥耦合振动分析[J]. 交通科学与工程, 2010, 26(1): 59-65.
LI Zhen-yuan, XIA Gui-yun, LI Chuan-xi. Vibrating frequencies and vehicle-bridge vibration of simply- supported skewed slab[J]. Journal of Transport Science and Engineering, 2010, 26(1): 59-65.
[12] 阮苗, 王忠民. 功能梯度斜板的屈曲分析[J]. 机械工程学报, 2011, 47(6):57-61转68.
RUAN Miao, WANG Zhong-min. Buckling analysis of functionally graded skew thin plate[J]. Journal of Mechanical Engineering, 2011, 47(6):57-61, 68.
[13] RUAN Miao, WANG Zhong-min. Transverse vibrations of moving skew plates made of functionally graded material[J]. Journal of Vibration and Control, first published on December 17, 2014:1-14.
[14] 王永亮. 微分求积法和微分求积单元法的原理与应用[D]. 南京: 南京航天航空大学, 2001.
WANG Yong-liang. Differential quadrature method and differential quadrature element method - theory and application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2001.
[15] 何甲兴, 王淑云, 杨 明. Fourier级数的求和理论与方法—求和因子法求和[J]. 数学的实践与认识, 2003, 33(12): 112-118.
HE Jia-xing, WANG Shu-yun, YANG Ming. On summation theory and method of Fourier series- summing by summation factor[J]. Mathematics in Practice and Theory, 2003, 33(12): 112-118.
[16] 金钰. 二元傅里叶级数的收敛阶[J]. 宁夏师范学院学报, 2008, 29(6): 80-82.
JIN Yu. The convergent order of a double Fourier series[J]. Journal of Ningxia Teaches University (Natural Science), 2008, 29(6): 80-82.
[17] 关新平, 吴忠强. 现代控制理论[M]. 北京: 电子工业出版社, 2012.
GUAN Xin-ping, WU Zhong-qiang. Modern control theory[M]. Beijing: Publishing House of Electronics Industry, 2012.