面内平动功能梯度斜板的主动振动控制

王忠民,邹德志

振动与冲击 ›› 2016, Vol. 35 ›› Issue (15) : 86-92.

PDF(2078 KB)
PDF(2078 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (15) : 86-92.
论文

面内平动功能梯度斜板的主动振动控制

  • 王忠民,邹德志
作者信息 +

Active vibration control of in-plane translating skew plate made of functionally graded materials

  • WANG Zhongmin, ZOU Dezhi
Author information +
文章历史 +

摘要

对新型功能梯度材料制成的面内平动斜板,通过直角坐标系和斜角坐标系的坐标变换,建立了在斜角坐标系下受多个集中控制力作用的横向振动控制微分方程。采用微分求积法,将微分方程和边界条件对空间坐标进行离散化处理,得到了时域内振动控制系统的状态方程。应用最优控制法,对面内平动功能梯度斜板的无量纲运动速度小于一阶无量纲临界速度时的等幅振动和大于一阶无量纲临界速度时的发散失稳两种情况进行了数值仿真,得到控制前后若干个节点挠度随时间的变化曲线。结果表明,该方法能够有效地控制面内平动功能梯度斜板的横向振动,特别是对于发散失稳的抑制。

Abstract

Through transformation between orthogonal coordinate system and skew angle coordinate system, the transverse vibration control differential equation for in-plane translating skew plate made of a new kind of functional graded materials, subjected to multiple concentrated control forces is derived in the skew coordinate system. The differential quadrature method is used to discretize the differential equation and boundary conditions, and the state equations of the vibration control system in the time domain are set up. Using the optimal control method, the optimal control law is obtained. For the case that the axially moving velocity of in-plane translating skew plate is less than the first order dimensionless critical speed ( equilamplitude vibration) and greater than the first order dimensionless critical speed (divergence instability), some numerical simulations for the system was implemented, and variation curve between the deflection of certain point and time under uncontrolled and controlled case are plotted. The numerical results show that the optimal control scheme can effectively control the vibration of in-plane translating skew plate made of functionally graded materials, particularly for suppression of the divergence instability of skew plate.

 

关键词

面内平动斜板 / 功能梯度材料 / 最优振动控制 / 微分求积法

Key words

in-plane translating skew plate / functionally graded materials / optimum vibration control / differential quadrature method

引用本文

导出引用
王忠民,邹德志. 面内平动功能梯度斜板的主动振动控制[J]. 振动与冲击, 2016, 35(15): 86-92
WANG Zhongmin, ZOU Dezhi . Active vibration control of in-plane translating skew plate made of functionally graded materials[J]. Journal of Vibration and Shock, 2016, 35(15): 86-92

参考文献

[1] Gorman D J. Free vibration analysis of rectangular plates[M]. New York: Elsevier North Holland, 1982.
[2] Lin C C. Stability and vibration characteristics of axially moving plates[J]. International Journal of Solids and Structures, 1997, 34(24): 3179-3190.
[3] Shin Changho, Chung Jintai, Kin Wonsuk. Dynamic characteristics of the out-of-plane vibration for an axially moving membrane [J]. Journal of Sound and Vibration, 2005, 286(4-5): 1019-1031.
[4] Zhou Yin-feng, Wang Zhong-min. Transverse vibration characteristics of axially moving viscoelastic plate[J]. Applied Mathematics and Mechanics, 2007, 28(2): 209-218.
[5] Ruan Miao, Wang Zhong-min, Wang Yan. Dynamic stability of functionally graded materials skew plates subjected to uniformly distributed tangential follower forces[J]. Journal of Vibration and Control, 2012, 18(7): 913-923.
[6] Hossain Nezhad Shirazi A, Qwji H R, Rafeeyan M. Active vibration control of an FGM rectangular plate using fuzzy logic controllers[C]. Procedia Engineering, 2011, 14: 3019-3026.
[7] 贺容波, 郑世杰. 光电层合简支板的多模态最优模糊主动振动控制. 振动与冲击,2015, 34(10): 77-81, 106.
HE Rong-bo,ZHENG Shi-jie. Multi-modal optimal fuzzy active vibration control of a photo-electric laminated simplysupported plate. Journal of' Vibration and Shock, 2015, 34(10): 77-81, 106.
[8] 浦玉学,张方,姜金辉. 变步长自适应结构振动主动控制算法. 振动与冲击,2015, 34(8):199-205.
PU Yu-xue,ZHANG Fang,JIANG Jin-hui. A varying step adaptive algorithm for structural vibration active control. Journal of' Vibration and Shock, 2015, 34(10): 199-205.
[9] 李国豪. 关于斜交异性斜板的弯曲理论[J]. 同济大学学报, 1997, 25(2) : 121-126.
LI Guo-hao. On the Bending theory of skew anisotropic skew plate[J]. Journal of Tongji University, 1997, 25(2): 121-126.
[10] 纪冬梅, 胡毓仁. 小波加权残值法在斜板后屈曲上的应用[J]. 应用力学学报, 2008, 25(4): 673-677.
JI Dong-mei, HU Yu-ren. Wavelet weighted residuals with application to post-buckling analysis of skew plates[J]. Chinese Journal of Applied Mechanics, 2008, 25(4): 673-677.
[11] 黎振源, 夏桂云, 李传习. 简支斜板的车—桥耦合振动分析[J]. 交通科学与工程, 2010, 26(1): 59-65.
LI Zhen-yuan, XIA Gui-yun, LI Chuan-xi. Vibrating frequencies and vehicle-bridge vibration of simply- supported skewed slab[J]. Journal of Transport Science and Engineering, 2010, 26(1): 59-65.
[12] 阮苗, 王忠民. 功能梯度斜板的屈曲分析[J]. 机械工程学报, 2011, 47(6):57-61转68.
RUAN Miao, WANG Zhong-min. Buckling analysis of functionally graded skew thin plate[J]. Journal of Mechanical Engineering, 2011, 47(6):57-61, 68.
[13] RUAN Miao, WANG Zhong-min. Transverse vibrations of moving skew plates made of functionally graded material[J]. Journal of Vibration and Control, first published on December 17, 2014:1-14.
[14] 王永亮. 微分求积法和微分求积单元法的原理与应用[D]. 南京: 南京航天航空大学, 2001.
     WANG Yong-liang. Differential quadrature method and differential quadrature element method - theory and application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2001.
[15] 何甲兴, 王淑云, 杨 明. Fourier级数的求和理论与方法—求和因子法求和[J]. 数学的实践与认识, 2003, 33(12): 112-118.
HE Jia-xing, WANG Shu-yun, YANG Ming. On summation theory and method of Fourier series- summing by summation factor[J]. Mathematics in Practice and Theory, 2003, 33(12): 112-118.
[16] 金钰. 二元傅里叶级数的收敛阶[J]. 宁夏师范学院学报, 2008, 29(6): 80-82.
JIN Yu. The convergent order of a double Fourier series[J]. Journal of Ningxia Teaches University (Natural Science), 2008, 29(6): 80-82.
[17] 关新平, 吴忠强. 现代控制理论[M]. 北京: 电子工业出版社, 2012.
GUAN Xin-ping, WU Zhong-qiang. Modern control theory[M]. Beijing: Publishing House of Electronics Industry, 2012.   
 

PDF(2078 KB)

Accesses

Citation

Detail

段落导航
相关文章

/