基于分数阶导数的黏弹性悬架减振模型及其数值方法

李占龙1,2,孙大刚1,2,宋 勇2,刘付喜1,赵树萍2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (16) : 123-129.

PDF(1526 KB)
PDF(1526 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (16) : 123-129.
论文

基于分数阶导数的黏弹性悬架减振模型及其数值方法

  • 李占龙1,2,孙大刚1,2,宋  勇2,刘付喜1,赵树萍2
作者信息 +

Fractional calculus-based vibration suppression model and numerical  method for viscoelastic suspension

  • LI Zhan-long1,2, SUN Da-gang1,2, LIU Fu-xi1, SONG Yong2, ZHAO Shu-pin2
Author information +
文章历史 +

摘要

为了准确掌握黏弹性悬架的动态响应,针对传统整数阶减振模型的不足,引入分数阶导数原理,构建了黏弹性材料FKV本构模型,建立了考虑几何参数的黏弹性悬架分数阶减振模型,利用Grumwald-Letnikov定义将模型中分数阶导数离散化,并转化为状态方程形式,依据矩阵函数理论推导出模型的数值解。以某型安装黏弹性悬架的履带车辆参数为例,分别建立了悬架的动态接触有限元模型和分数阶减振模型,获得了在翻越障碍工况下两种模型响应的对比解。结果表明:分数阶减振模型体现了黏弹性悬架响应具有全局相关性和记忆性,且历史作用渐近加强;黏弹性悬架有较好的缓冲减振性能;分数阶减振模型解与有限元方法计算结果有较好的一致性。旨为下一步的实车试验和实际应用提供理论参考。

Abstract

To obtain dynamic responses of viscoelastic suspension accurately, FKV constitutive model of viscoelastic materials was developed by employing fractional derivative. Vibration model of viscoelastic suspension considering geometric factor was also built based on FKV. Numerical solution was derived by employing Grumwald-Letnikov definition for fraction calculus and matrix function theory. For comparison, dynamic contact FEM was established based on a crawler vehicle installed viscoelastic suspension to compare with fractional method. Results show that fractional vibration control model can embody the nonlocal correlation and memory feature of viscoelastic suspension which exhibits excellent vibration control capability. The numerical result displays well agreement with that from FEM. The study provides essential theoretical references for the future in-situ test and practice application.

关键词

分数阶导数 / 黏弹性悬架 / 减振模型 / 数值方法

Key words

 factional calculus / viscoelastic suspension / vibration control model / numerical method

引用本文

导出引用
李占龙1,2,孙大刚1,2,宋 勇2,刘付喜1,赵树萍2. 基于分数阶导数的黏弹性悬架减振模型及其数值方法[J]. 振动与冲击, 2016, 35(16): 123-129
LI Zhan-long1,2, SUN Da-gang1,2, LIU Fu-xi1, SONG Yong2, ZHAO Shu-pin2. Fractional calculus-based vibration suppression model and numerical  method for viscoelastic suspension[J]. Journal of Vibration and Shock, 2016, 35(16): 123-129

参考文献

[1] Song Yong, Sun Da-gang, Zhang Xin, et al. An analytical solution to steady-state temperature distribution of N-layer viscoelastic suspensions used in crawler vehicles[J]. International Journal of Heavy Vehicle Systems, 2012,19(3): 281298.
[2] Luo Y; Liu Y; Yin H P. Numerical investigation of nonlinear properties of a rubber absorber in rail fastening systems[J]. International Journal of Mechanical Sciences, 2013,69(1): 107113.
[3] 范让林,刘立,吕振华,等. 发动机隔振橡胶元件的有限元分析[J]. 内燃机学报,2009,27(2):186191.
FAN Rang-lin, LIU Li, LV Zhen-hua, et al. Finite element analysis of engine vibration isolation rubber mount[J]. Transaction of CSICE,2009,27(2):186191.
[4] 孙大刚,干奇银,杨兆民,等. 间隔阻尼层式支重轮缓冲性能分析[J]. 农业工程学报,2009,25(8):7882.
SUN Da-gang, GAN Qi-yin, YANG Zhao-min,et a1.Buffer property analysis of spaced-damping layer bogie wheel[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2009,25(8):7882.
[5] Zhou Y. Recent advances in fractional differential equations[J]. Applied Mathematics and Computation, 2015,257(1):1.
[6] Sun Li-min, Chen Lin. Free vibrations of a taut cable with a general viscoelastic damper modeled by fractional derivatives[J]. Journal of Sound and Vibration, 2015, 335(1): 1933.
[7] Cafagna D. Fractional calculus: a mathematical tool from the past for present engineers: past and present[J]. Industrial Electronics Magazine, IEEE, 2007, 1(2): 3540.
[8] 孙会来,金纯,张文明,等. 基于分数阶微积分的油气悬架建模与试验分析[J]. 振动与冲击, 2014, 33(17): 167172.
SUN Hui-lai, JIN Chun, ZHANG Wen-ming, et al. Modeling and experimental analysis of hydro-pneumatic suspension based on fractional calculus. Journal of Vibration and Shock, 2014, 33(17): 167172.
[9] Spanos P D, Evangelatos G I. Response of a non-linear system with restoring forces governed by fractional derivatives: time domain simulation and statistical linearization solution[J]. Soil Dynamics and Earthquake Engineering,2010,30(9):811821.
[10] Lukashchuk S Y. An approximate solution method for ordinary fractional differential equations with the Riemann–Liouville fractional derivatives[J]. Communications in Nonlinear Science and Numerical Simulation, 2014,19(2):390400.
[11] Butera S, Di Paola M. A physically based connection between fractional calculus and fractal geometry[J]. Annals of Physics, 2014,350(10):146158.
[12] Zopf C, Hoque S E, Kaliske M. Comparison of approaches to model viscoelasticity based on fractional time derivatives[J]. Computational Materials Science,2015,98(1):287296.
[13] 贺少波,孙克辉,王会海. 分数阶混沌系统的Adomian分解法求解及其复杂性分析[J]. 物理学报,2014,63(3):58-65.
HE Shao-bo, SUN Ke-hui, WANG Hui-hai. Solution of the fractional-order chaotic system based on Adomian decomposition algorithm and its complexity analysis[J]. Acta Physica Sinica,2014,63(3):5865.
[14] Zhu Shengyang, Cai Chengbiao, Spanos Pol D. A nonlinear and fractional derivative viscoelastic model for rail pads in the dynamic analysis of coupled vehicle–slab track systems[J]. Journal of Sound and Vibration, 2015, 335(1): 304320.
[15] Uchaikin V V. Fractional Derivatives for Physicists and Engineers[M]. Beijing: Higher Education Press, 2013: 229332.
[16] 孙大刚,宋勇,林慕义,等.黏弹性悬架阻尼缓冲件动态     接触有限元建模研究[J].农业工程学报,2008,24(1):2428.
SUN Da-gang, SONG Yong, LIN Mu-yi, et al. Modeling of dynamic contact finite element method for damping buffer components mounted on viscoelastic suspensions[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2008,24(1):2428.
[17] 孙大刚,诸文农,贡凯军.大型履带式推土机行走系阻尼减
振的研究[J]. 机械工程学报,1998,34(1): 2732.
SUN Da-gang, ZHU Wen-nong, GONG Kai-jun. Study on vibration damping isolations of undercarriages in heavy duty crawler-type bulldozers[J]. Journal of Mechanical Engineering, 1998,34(1):2732.

PDF(1526 KB)

798

Accesses

0

Citation

Detail

段落导航
相关文章

/