基于重整化方法的冲击载荷下岩石振动分析

李玮1,纪照生1,董智煜2,李卓伦1,李悦1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (16) : 49-54.

PDF(1942 KB)
PDF(1942 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (16) : 49-54.
论文

基于重整化方法的冲击载荷下岩石振动分析

  • 李玮1,纪照生1,董智煜2,李卓伦1,李悦1
作者信息 +

Vibration analysis of rock under impact load based on renormalization method

  • Li Wei1, Ji Zhaosheng1,DONG  Zhiyu2,LI Zhoulun1,LI Yue1
Author information +
文章历史 +

摘要

旋转冲击钻井是当前钻进深井硬地层应用较多且效果显著的一种高效破岩技术。笔者基于振动学理论,在考虑岩石重力的情况下,建立钻头冲击载荷下岩石振动响应的数学模型,采用重整化方法对其求解,利用MATLAB软件分析各参数对钻头高频冲击下岩石振动的影响,并进行了室内实验对理论分析结果进行了验证。结果显示:冲击载荷下岩石的运动为两个简谐振动的互扰振动;岩石的密度越小,刚度越小,冲击力越大,岩石的振动幅度越大,振动速度也越快;岩石存在一个固有频率,冲击载荷冲击频率越接近这个固有频率,岩石的振动越剧烈。当钻头高频振动频率和岩石固有频率相等时,岩石振动幅度和振动速度最大,即达到了共振。冲击载荷下岩石响应的分析对于揭示动载作用下岩石的破碎机理,指导冲击工具的设计具有重要意义。

Abstract

Rotary percussion drilling is currently most used efficient rock breaking technology in deep hard formations drilling and the effect is remarkable. Based on vibration theory and the consideration of the gravity of rack, the mathematical model of rock vibration under impact load was established. Renormalization method was used to get the solution and MATLAB software was used to analyze the influence of various parameters on the vibration of the rock. Finally, laboratory experiments were conducted to verify the analytical results. Research shows: The movement of rack under drill bit’s impact is mutual interference vibration between two harmonic vibration. The vibration amplitude of rock as well as the vibration velocity becomes larger with the decrease of rock density, the decrease of rock stiffness and the increase of the impact force. There is an inherent frequency of rock. Vibration of rock becomes more intense with the decrease of the difference between impact frequency and the inherent frequency. When high impact frequency equals to the inherent frequency, the vibration amplitude and vibration velocity reach the largest and this is resonance. For revealing the crushing mechanism of rock under dynamic load and guiding the design of impact tools, analysis of the response of rock under impact loads is of great significance.

 

关键词

旋转冲击钻井 / 岩石振动 / 幅频特性 / 共振

Key words

Rotary percussion drilling / Rock vibration / Amplitude-frequency characteristics / Resonance

引用本文

导出引用
李玮1,纪照生1,董智煜2,李卓伦1,李悦1. 基于重整化方法的冲击载荷下岩石振动分析[J]. 振动与冲击, 2016, 35(16): 49-54
Li Wei1, Ji Zhaosheng1,DONG Zhiyu2,LI Zhoulun1,LI Yue1. Vibration analysis of rock under impact load based on renormalization method[J]. Journal of Vibration and Shock, 2016, 35(16): 49-54

参考文献

[1] 常德玉,李根生,沈忠厚,等. 深井超深井井底应力场[J]. 石油学报,2011,32(4):697-703.
CHANG De-yu, LI Gen-sheng, SHEN Zhong-hou, et al. The stress field of bottom hole in deep and ultra-deepwells[J]. Acta Petrolei Sinica, 2011, 32(4): 697-703.
[2] 祝效华,汤历平,童华. 高频扭转冲击钻进的减振与提速机理研究[J]. 振动与冲击,2012,31(20):75-78.
Zhu Xiaohua, Tang Liping, Tong Hua. Rock breaking mechanism of a high frequency torsional impact drilling[J]. Journal of Vibration and Shock, 2012, 31(21): 75-78.
[3] Li Wei, Yan Tie, Li Siqi, et al. Rock Fragmentation Mechanisms and an Experimental Study of Drilling tools during High-frequency Harmonic Vibration[J]. Petroleum Science, 2013, 10(2): 205-211.
[4] Romulo R. Aguiar, Hans I. Weber. Development of a vibroimpact device for the resonance hammer drilling[J]. Proceedings of the XII International Symposium on Dynamic Problems of Mechanics, 2007.
[5] 熊继有,钱声华,严仁俊,等. 钻井高效破岩新进展[J]. 天然气工业,2004,24(04):27-29.
XIONG Ji-you, QIAN Sheng-hua, YAN Ren-jun, et al. New progress of high efficiency of drilling[J]. Natural gas industry, 2004, 24(04): 27-29.
[6] 雷鹏,倪红坚,王瑞和,等.自激振荡式旋转冲击钻井工具水力元件性能分析与优化[J].振动与冲击,2014,33(19):175-180+198.
LEI Peng, NI Hong-jian, WANG Rui-he, et al. Performance analysis and optimization for hydraulic components of self-oscillating rotary impact drilling tool[J]. Journal of vibration and shock, 2014, 33(19): 175-180+198.
[7] Li Siqi, Yan Tie, Li Wei, et al. Modeling of vibration response of rock by harmonic impact[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 90-96.
[8] 文平,陈波,雷巨鹏,等.液动冲击旋转钻井技术在玉门青西油田的应用[J].天然气工业,2004,24(09):64-67+9.
WEN Ping, CHEN Po, LEI Ju-peng, et al. Application of hydraulic impact rotary drilling technology in Qingxi Oilfield[J]. Natural gas industry, 2004, 24(09): 64-67+9
[9] 姚晔,徐宝富,陆敏恂. 低频大振幅液压冲击器的建模和分析方法[J]. 同济大学学报,1999,27(6):741-744.
YAO Ye, XU Bao-fu, LU Min-xun. Modeling and analytic method of low frequency and large amplitude hydraulic shocker[J]. Journal of Tongji University, 1999, 27(6): 741-744.
[10] Marian Wiercigroch, Anton M. Krivtsov, Jerzy Wojewoda. Vibrational energy transfer via modulated impacts for percussive drilling[J]. Journal of Theoretical and applied mechanics, 2008, 46(3): 715-726.
[11] 金解放,李夕兵,王观石,等.循环冲击载荷作用下砂岩破坏模式及其机理[J].中南大学学报民(自然科学版),2012,43(4):1453-1460.
JIN Jie-fang, LI Xi-bing, WANG Guan-shi, et al. Failure modes and mechanisms of sandstone under cyclic impact loadings[J]. Journal of Central South University, 2012, 43(4): 1453-1460.
[12] 宋义敏,杨小彬,金璐,等.冲击载荷作用下岩石I型裂纹动态断裂试验研究[J].振动与冲击,2014,33(11):49-53.
SONG Yi-min, YANG Xiao-bin, JIN Lu, et al. Dynamic fracture test for rock I-type crack under impact load[J]. Journal of vibration and shock, 2014, 33(11): 49-53.
[13] 李玮,闫铁,张志超,等. 高频振动钻具冲击下岩石响应机理及破岩试验分析[J]. 石油钻探技术,2013,41(06):25-28.
LI Wei, YAN Tie, ZHANG Zhic-hao, et al. Rock response mechanism and rock breaking test analysis for impact of high frequency vibration drilling tool[J]. Petroleum Drilling Techniques, 2013, 41(6): 25-28.
[14] 赵伏军,李夕兵,冯涛,等. 动静载荷耦合作用下岩石破碎理论分析及试验研究[J]. 岩石力学与工程学报,2005,24(08):1315-1320.
ZHAO Fu-jun, LI Xi-bing, FENG TAO, et al. Theoretical analysis and experimental study on the fracture of the rock under static and dynamic loads[J]. Chinese journal of rock mechanics and engineering, 2005, 24(08): 1315-1320
[15] 陶兴华,张建龙,曾义金. 石油旋冲钻井技术研究及应用[J]. 石油钻采工艺,1998,20(02):27-30+112.
TAO Xing-hua, ZHANG Jian-long, ZENG Yi-jin. Study and Application of Rotary Percussion Drilling Technology[J]. Oil Drilling & Production Technology, 1998, 20(02): 27-30+112.
[16] 柴立和. 重整化方法及其应用的研究进展[J]. 现代物理知识,2005,17(02):32-35.
CHAI Li-he. Progress in reforming method and its applications[J]. Modern Physics, 2005, 17(02): 32-35.

PDF(1942 KB)

Accesses

Citation

Detail

段落导航
相关文章

/