基于广义相关系数自适应随机共振的液压泵振动信号预处理方法

经哲 郭利

振动与冲击 ›› 2016, Vol. 35 ›› Issue (16) : 72-78.

PDF(2708 KB)
PDF(2708 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (16) : 72-78.
论文

基于广义相关系数自适应随机共振的液压泵振动信号预处理方法

  • 经哲 郭利
作者信息 +

Hydraulic pump vibration signal pretreatment based on adaptive stochastic resonance with general correlation function

  • Jing Zhe  Guo Li
Author information +
文章历史 +

摘要

针对液压泵故障振动信号信噪比低,故障特征难以提取的问题,对液压泵振动信号预处理方法进行研究。针对现有自适应随机共振优化算法及其目标函数存在的问题,将量子遗传算法(Quantum Genetic Algorithm,QGA)引入自适应随机共振中,提出一种改进的自适应随机共振的信号预处理方法。该方法以广义相关系数为目标函数,采用QGA算法对随机共振系统的结构参数进行优化,从而实现对信号的降噪预处理。仿真及实验结果表明,该方法能够有效提取强噪声背景下的液压泵振动信号频率特征,是液压泵故障特征提取及故障诊断中信号预处理的有效方法,可进一步发展至实际工程应用。

Abstract

Aiming at the problem that the signal-to-noise ratio(SNR) of vibration signal of hydraulic pump is low and that fault feature is hardly extracted, vibration signal preprocessing methods of hydraulic pump are studied. An improved adaptive stochastic resonance(ASR) pretreatment is proposed with quantum genetic algorithm(QGA) being introduced in ASR, because of the problems that ASR and its object function. The method proposed in this paper uses general correlation function(GCF) as the object function, and QGA is the optimization algorithm to optimize the parameters of stochastic resonance systems to realize the pretreatment of the vibration signal. Being applied in simulation data and engineering practice, this method could be extracted the frequency character of hydraulic pump vibration signal from strong noise background, and the pretreatment is effective in fault character extract and diagnosis of hydraulic pump vibration signal, and it could be developed to practical application for further.

关键词

广义相关系数 / 自适应随机共振 / 量子遗传算法 / 液压泵振动信号

Key words

general correlation function / adaptive stochastic resonance / Quantum Genetic Algorithm / hydraulic pump vibration signal

引用本文

导出引用
经哲 郭利. 基于广义相关系数自适应随机共振的液压泵振动信号预处理方法[J]. 振动与冲击, 2016, 35(16): 72-78
Jing Zhe Guo Li. Hydraulic pump vibration signal pretreatment based on adaptive stochastic resonance with general correlation function[J]. Journal of Vibration and Shock, 2016, 35(16): 72-78

参考文献

[1]  任立通,胡金海,谢寿生,等. 基于随机共振预处理的振动故障特征提取研究[J], 振动与冲击. 2014,33(2):141-146.
REN Li-tong; HU Jin-hai; XIE Shou-sheng, et al. Vibration fault feature extraction based on stochastic resonance pretreatment[J]. Journal of Vibration and Shock, 2014,33(2):141-146.
[2]  冷永刚,田祥友. 一阶线性系统随机共振在转子轴故障诊断中的应用研究[J]. 振动与冲击, 2014,33(17):1-5.
LENG Yong-gang, TIAN Xiang-you. Application of a first-order linear system’s stochastic resonance in fault diagnosis of rotor shaft[J]. Journal of Vibration and Shock, 2014,33(17):1-5.
[3]  郝研,王太勇,万剑,等. 基于级联双稳随机共振和多重分形的机械故障诊断方法研究[J]. 振动与冲击, 2012,31(8):181-185.
HAO Yan, WANG Tai-yong, WAN Jian, et al. Mechanical fault diagnosis based on cascaded bistable stochastic resonance and multi-fractal[J]. Journal of Vibration and Shock, 2012,31(8):181-185.
[4]  王立国,谢寿生,胡金海,等. 基于随机共振的航空发动机转子多域融合神经网络故障诊断[J]. 计算机测量与控制,2013,21(6):1483-1486.
WANG Li-guo, XIE Shou-sheng, HU Jin-hai, ea al. Multi-omen-region fusion neural network fault diagnosis of aero-engine rotor system based on stochastic resonance[J]. Computer Measurement and Control, 2013,21(6):1483-1486.
[5]  赵艳菊,王太勇,任成祖,等. 强噪声背景下的经验模式分解研究[J]. 振动与冲击, 2009,28(3):149-151,157.
ZHAO Yan-ju, WANG Tai-yong, REN Chen-zu, et al. Research on empirical mode decomposition of signals submerged in a heavy noise[J]. Journal of Vibration and Shock, 2009,28(3):149-151,157.
[6]  Nafle M, Tewfik A H. Low power detection using stochastic resonance[J]. IEEE Int Conf on Signal System and Computer, 1998: 1461-1465.
[7] Bohou Xu, Fabing Duan, Ronghao Bao, et al. Stochastic Resonance with tuning system parameters: The application of bistable systems in signal processing[J]. Chaos, Solitons and fractals, 2002(13): 633-644.
[8]  张仲海,王多,王太勇,等. 采用粒子群算法的自适应变步长随机共振研究[J].振动与冲击, 2013,32(19):125-130,152.
ZHANG Zhong-hai, WANG Duo, WANG Tai-yong, et al. Self-adaptive step-changed stochastic resonance using particle swarm optimization[J]. Journal of Vibration and Shock, 2013,32(19):125-130,152.
[9]  朱维娜,林敏. 基于人工鱼群算法的轴承故障随机共振自适应检测方法[J]. 振动与冲击, 2014,33(6):143-147.
ZHU Wei-na, LIN Min. Method of adaptive stochastic resonance for bearing fault detection based on artificial fish swarm algorithm[J]. Journal of Vibration and Shock, 2014,33(6):143-147.
[10] 王曦. 基于随机共振的弱信号检测研究[D]. 北京:北京邮电大学, 2010.
[11] 李强,王太勇,冷永刚等. 基于近似熵测度的自适应随机共振研究[J]. 物理学报, 2007,56(12):6803-6806.
Li Qiang, Wang Taiyong, Leng Yonggang, etc. Research of Adaptive Stochastic Resonance Based on Approximate Entropy[J]. Acta Physica Sinica, 2007,56(12):6803-6806.
[12] 陶志颖,鲁昌华,查正兴等. 基于单势阱随机共振的多频周期微弱信号检测[J]. 电子测量与仪器学报, 2014,28(2):171-176.
Tao Zhiying, Lu Changhua, Zha Zhengxing, etc. Multi-frequency Periodic Weak Signal Detection Based on Single–well Potential Stochastic Resonance[J]. Journal of Electronic Measurement and Instrumentation, 2014,28(2):171-176.
[13] 谢磊.轴承振动分析与寿命评估方法研究[D].成都:电子科技大学, 2013.
[14] 丁晶,王文圣,赵永龙. 以互信息为基础的广义相关系数[J]. 四川大学学报, 2002,34(3):1-5.
Ding Jing, Wang Wensheng, Zhao Yonglong. General Correlation Coefficient Between Variables Based on Mutual Information[J]. Journal of Sichuan University, 2002,34(3):1-5.
[15] 冷永刚,赖志慧,范胜波,等. 二维Duffing振子的大参数随机共振及微弱信号检测研究[J].物理学报, 2012,61(23):230502.
LENG Yong-gang, LAI Zhi-hui, FAN Sheng-bo, et al. Large parameter stochastic resonance of two-dimensional Duffing oscillator and its application on weak signal detection[J]. Acta Physica Sinica, 2012,61(23):230502.
[16] 姜万录,郑直,朱勇,等. 基于最优扁平型结构元素长度的液压泵故障诊断研究[J].振动与冲击, 2014,33(15):35-41.
JIANG Wan-lu, ZHENG Zhi, ZHU Yong, ea al. Hydraulic pump fault diagnosis based on optimal flat structure element length[J]. Journal of Vibration and Shock, 2014,33(15):35-41.

PDF(2708 KB)

Accesses

Citation

Detail

段落导航
相关文章

/