基于数学形态梯度谱熵的性能退化特征提取方法及其应用

刘鹏,李洪儒,许葆华

振动与冲击 ›› 2016, Vol. 35 ›› Issue (16) : 86-90.

PDF(1724 KB)
PDF(1724 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (16) : 86-90.
论文

基于数学形态梯度谱熵的性能退化特征提取方法及其应用

  • 刘鹏,李洪儒,许葆华
作者信息 +

A performance degradation feature extraction method and its application based on mathematical morphological gradient spectrum entropy

  • Liu Peng, Li Hong-ru, Xu Bao-hua
Author information +
文章历史 +

摘要

针对数学形态谱熵难以准确描述信号的形态复杂度以及性能退化趋势评价效果不理想的问题,提出一种基于数学形态梯度谱熵的性能退化特征提取方法。该方法利用形态梯度算子在信号处理中能有效提取故障特征信息并抑制噪声的优势,将其引入到形态谱熵的定义中,得到数学形态梯度谱熵的概念。通过对仿真信号进行分析,验证了所提出的形态梯度谱熵作为信号复杂度指标的合理性与有效性。最后,将该方法应用到滚动轴承的性能退化研究中,结果表明,形态梯度谱熵能有效反映滚动轴承的性能退化趋势。

Abstract

In view of that morphology spectrum entropy fails to accurately describe the morphological complexity of signals and its evaluation effect of performance degradation trend is not ideal, a performance degradation feature extraction method based on mathematical morphological gradient spectrum entropy was proposed. In the paper, the method introduced morphological gradient algorithm which could effectively extract fault feature information and remove interference components in the signal processing into the definition of morphology spectrum entropy, and got the conception of mathematical morphological gradient spectrum entropy. The simulation signal verified the rationality and effectiveness of morphological gradient spectrum entropy as a signal complexity index. Lastly the rolling bearing performance degradation study result proved that, morphological gradient spectrum entropy could reflect rolling bearing's performance degradation trend.

关键词

性能退化 / 特征提取 / 形态谱熵 / 形态梯度谱熵 / 滚动轴承

Key words

performance degradation / feature extraction / morphological spectrum entropy / morphological gradient spectrum entropy / rolling bearing

引用本文

导出引用
刘鹏,李洪儒,许葆华. 基于数学形态梯度谱熵的性能退化特征提取方法及其应用[J]. 振动与冲击, 2016, 35(16): 86-90
Liu Peng, Li Hong-ru, Xu Bao-hua. A performance degradation feature extraction method and its application based on mathematical morphological gradient spectrum entropy[J]. Journal of Vibration and Shock, 2016, 35(16): 86-90

参考文献

[1] 徐东, 徐永成, 陈循, 等. 基于EMD的灰色模型的疲劳剩余寿命预测方法研究 [J]. 振动工程学报, 2011, 24(1): 104-110.
Xu D, C Y C, Chen X, et al. Residual fatigue life prediction based on grey model and EMD [J]. Journal of Vibration Engineering, 2011, 24(1): 104-110.
[2] 张龙, 黄文艺, 熊国良. 基于多尺度熵的滚动轴承故障程度评估 [J]. 振动与冲击, 2014, 33(9): 185-189.
Zhang L, Huang W Y, Xiong G L, et al. Assessment of rolling element bearing fault severity using multi-scale entropy [J]. Journal of Vibration and Shock, 2014, 33(9): 185-189.
[3] Li Q Y, Xu J, Wang W H, et al. Slope displacement prediction based on morphological filtering [J]. Journal of Central South University, 2013, 20: 1724-1730.
[4] Raj S, Murali N. Early classification of bearing faults using
morphological operators and fuzzy inference [J]. IEEE Transactions on Industrial Electronics, 2013, 60(2): 567-574.
[5] 王书涛, 张金敏, 李圆圆, 等. 基于数学形态学和模糊聚类的旋转机械故障诊断 [J]. 仪器仪表学报, 2012, 33(5): 1054-1061.
Wang S T, Zhang J M, Li Y Y, et al. rotating machinery fault diagnosis based on mathematical morphology and fuzzy clustering [J]. Journal of Vibration and Shock, 2012, 33(5): 1054-1061.
[6] 王冰, 李洪儒, 许葆华. 基于多尺度形态分解谱熵的电机轴承预测特征提取及退化状态评估 [J]. 振动与冲击, 2013, 32(22): 124-128.
Wang B, Li H R, Xu B H. Motor bearing forecast feature extracting and degradation status identification based on multi-scale morphological decomposition spectrum entropy [J]. Journal of Vibration and Shock, 2013, 32(22): 124-128.
[7] Li B, Zhang P L, Wang Z J. A weighted multi-scale morphological gradient filter for rolling element bearing fault detection [J]. ISA Transactions, 2011, 50: 599-608.
[8] 刘东升, 李元, 杨博文, 等. 基于自适应多尺度形态梯度与非负矩阵分解的轴承故障诊断 [J]. 振动与冲击, 2013, 32 (19): 106-110.
L D S, Li Y, Y B W, et al. Bearing fault diagnosis based on adaptive multi-scale morphological gradient and non-negative matrix factorization [J]. Journal of Vibration and Shock, 2013, 32(19): 106-110.
[9] 李兵, 高敏, 张旭光, 等. 用形态梯度法与非负矩阵分解的齿轮故障诊断 [J]. 振动、测试与诊断, 2014, 34(2): 295-300.
Li B, Gao M, Zhang X G. Gear fault diagnosis based on adaptive multi-scale morphological gradient and non-negative matrix factorization [J]. Journal of Vibration, Measurement and Diagnosis, 2014, 34(2): 295-300.
[10] Dong Y B, Liao M F. Fault diagnosis of rolling element bearing based on modified morphological method [J]. Mechanical Systems and Signal Processing, 2011, 25 (4): 1276-1286.
[11] Zhang Y D, Wu L A. Recursive structure element decomposition using migration fitness scaling genetic algorithm [J]. Advances in Swarm Intelligence, 2011, 6728: 514-512.
[12] 姜万录, 郑直, 朱勇, 等. 基于最优扁平型结构元素长度的液压泵故障诊断研究 [J]. 振动与冲击, 2014, 33 (15): 35-41.
Jiang W L, Zheng Z, Zhu Y, et al. Hydraulic pump fault diagnosis based on optimal flat structure element length[J]. Journal of Vibration and Shock, 2014, 33 (15): 35-41.
[13] Lee J, Qiu H, Yu G, et al. Rexnord technical services: 'bearing data set', IMS, University of Cincinnati [EB/OL].NASA Ames Prognostics Data Repository. http://ti.arc.nasa.gov/project/prognostic-data-repository.
[14] K. A. Loparo. Bearing Data Center [EB/OL]. Case Western Reserve University. http://www.eecs.cwru. edu/laboratory/bearing.

PDF(1724 KB)

Accesses

Citation

Detail

段落导航
相关文章

/