液压阻力系数k1是反映主流流道结构特征的参数,是火炮制退机设计的关键,相似流道结构特征时可参考取值,而不同流道结构时取值范围相差较大。针对某筒壁沟槽式制退机,为了确定合理的k1取值范围,对其影响参数、变化规律进行了研究。通过筒壁沟槽式制退机主流流道特征进行分析,经合理简化,将活塞杆固定,设定入口边界流速V’模拟制退杆后坐运动速度V,出口边界为自由流出,在Fluent软件中建立了主流流场等效分析模型,通过仿真得到活塞壁面受力大小,再由伯努利方程推导得到液压阻力系数k1,并以某成熟制退机为例进行了方法验证。按照该方法,研究了后坐速度V和流道截面积ax对k1的影响,其在后坐过程中是动态变化的,随着后坐速度、流道面积减小,在一定范围内逐渐增大。在本文所设计的制退机结构参数条件下,结合后坐阻力仿真与试验结果对比,k1合理的取值范围为2.4~2.7。
Abstract
Hydraulic resistance coefficient k1, which reflecting mainstream channel structure characteristic, is a key parameter in artillery recoil mechanism design. It can be initialized by experience when the channel structure is similar, otherwise it may be different completely. The cylinder wall groove recoil mechanism is studied in the paper. For obtaining the reasonable range of k1 in theoretic design, the influence parameters are studied. Based on the mainstream channel structure analysis and reasonable simplification, by fixing the piston and rod, translating recoil velocity V by inlet velocity V’ and setting free outlet, the equivalent flow field model is set up and simulated in Fluent. Under the certain condition of inlet velocity V’ and the channel section area ax, the piston force is calculated. And then,the coefficient k1 can be deduced from Bernoulli equation. And the method is validated with a mature recoil mechanism. According to the method,the influence of V and ax on k1 are studied. The coefficient k1 is increased gradually within a range when V and ax decrease during recoil. Under the condition of the recoil mechanism parameters in the paper, and based on the recoil force comparison of simulation and test, the reasonable range of k1 should be 2.4~2.7.
关键词
制退机 /
液压阻力系数 /
流场仿真 /
后坐阻力
{{custom_keyword}} /
Key words
recoil mechanism /
hydraulic resistance coefficient /
flow field simulation /
recoil force
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 高树兹,陈运生,张月林,等. 火炮反后坐装置设计[M]. 北京:兵器工业出版社,1995.
GAO Shuzi, CHEN Yunsheng, ZHANG Yuelin, et al. Gun recoil mechanism[M]. Beijing: Weapon Industry Press, 1995.
[2] 王福军. 计算流体动力学分析-CFD软件原理与应用[M]. 北京:清华大学出版社, 2004.
WANG Fujun. Computational fluid dynamic analysis — principles and applications of CFD software[M]. Beijing: Tsinghua University Press, 2004.
[3] 赵建新,王兴贵,张鸿浩. 基于局部损失的制退机液压阻力模型[J]. 兵工学报,2001,22(4):441-443.
ZHAO Jianxin, WANG Xinggui, ZHANG Honghao. A hydraulic resistance model for recoil brake based on local losses[J]. ACTA ARMAMENTARII, 2001,22(4):441-443.
[4] 范永,刘树华,曹广群. 基于动网格的某制退机三维流场数值模拟与分析[J]. 火炮发射与控制学报, 2010, (4):63-65.
FAN Yong, LIU Shuhua, CAO guangqun. Numerical simulation and analysis on 3D flow field of a recoil mechanism based on dynamic mesh[J]. JOURNAL OF GUN LAUNCH & CONTROL, 2010, (4): 63-65.
[5] 张晓东,张培林,傅建平等. 双方程湍流模型对制退机内流场计算的适用性分析[J]. 爆炸与冲击,2011, 31(5):516-520.
ZHANG Xiaodong, ZHANG Peilin, FU jianping, et al. Applicability analysis of turbulence models on numerical simulation of internal flow field of recoil brake[J]. EXPLOSION AND SHOCk WAVES, 2011, 31(5):516-520.
[6] 杨玉栋,张培林,郭化平,等. 火炮发射冲击载荷对制退机性能的影响研究[J]. 振动与冲击, 2014,33(12):111-116.
YANG Yudong, ZHANG Peilin, GUO Huaping, et al. Effect of gun firing impact load on performance of recoil brake[J]. JOURNAL OF VIBRATION AND SHOCK, 2014,33(12): 111-116.
[7] 杨玉栋,张培林,傅建平,等. 考虑液体空化的火炮制退机性能分析[J]. 振动与冲击, 2012,31(20):94-98.
YANG Yudong, ZHANG Peilin, FU Jianping, et al. Performance of a gun recoil mechanism considering liquid cavitation[J]. JOURNAL OF VIBRATION AND SHOCK, 2012,31(20):94-98.
[8] 宗士增,钱林方,徐亚栋. 火炮反后坐装置动力学耦合分析与优化[J]. 兵工学报, 2007,28(3):272-275.
ZONG Shizeng, QIAN Linfang, XU Yadong. Dynamic coupling analysis and optimization of gun recoil mechanism[J]. ACTA ARMAMENTARII, 2007,28(3):272-275.
[9] 杜中华,狄长春. 某火炮复杂反后坐装置工作特性仿真分析[J]. 机械工程师, 2011, (2):96-99.
DU Zhonghua, DI Changchun. Working characteristic simulation analysis of a gun with complex recoil system[J]. Mechanical Engineer, 2011, (2):96-99.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}