磁流变弹性体吸振器的拓频控制设计与simulink模拟优化

李绿洲1,2,丁建宁1, 田煜2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (17) : 171-176.

PDF(1835 KB)
PDF(1835 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (17) : 171-176.
论文

磁流变弹性体吸振器的拓频控制设计与simulink模拟优化

  • 李绿洲1,2,丁建宁1, 田煜2
作者信息 +

Frequency-broadening Processing of Magnetorheological Elastomer Vibration Absorber and Optimization of Simulink Simulation

  • Li Lv-zhou1、2 ,Ding Jian-Ning1 ,Tian Yu2
Author information +
文章历史 +

摘要

磁流变弹性体因其剪切模量可控、稳定性好且响应速度快,逐渐被应用于动力吸振器,而以定点理论推算的最优阻尼比和调谐比不适用于主系统含阻尼、振子固有频率变化的吸振系统。本文根据磁流变弹性剪切模量随磁场强度变化而变化,子系统振子固有频率随之变化的原理,设计优化了双自由度主系统含阻尼的磁流变弹性体吸振器数学模型,通过磁场强度的改变可实现吸振的目的。基于Matlab simulinkd模块,为实际应用构造了时域、频域模型,模拟分析了吸振器的工作原理和拓频设计,为磁流变弹性体的半主动吸振器的应用提供了设计依据。

Abstract

Due to good stability and fast response speed, magnetorheological elastomers (MRE) is gradually applied to dynamic vibration absorber. Shear modulus of MRE changes over magnetic field intensity, and natural frequency of the vibration subsystem changes with it. But the optimal damp radtio and optimum frequency ratio based on fix-point theory do not apply to the system whose main system has damping and subsystem has variable natural frequency. The stduy design and optimize the mathmatical model of double-degree MRE vibration absorber including damping. The model which is described in the paper implement the MRE vibration absorber by changing the magnetic field intensity. The study structure the time-domain model and frequency-domain model based on Matlab Simulink. The simulation analysis the principle and the frequency-broadening processing of vibration absorber which provides the design basis for the application of magnetorheological elastomers in semi-active vibration absorber.
 

引用本文

导出引用
李绿洲1,2,丁建宁1, 田煜2. 磁流变弹性体吸振器的拓频控制设计与simulink模拟优化[J]. 振动与冲击, 2016, 35(17): 171-176
Li Lv-zhou1、2,Ding Jian-Ning1,Tian Yu2. Frequency-broadening Processing of Magnetorheological Elastomer Vibration Absorber and Optimization of Simulink Simulation[J]. Journal of Vibration and Shock, 2016, 35(17): 171-176

参考文献

[1] FRAHM H. Device for damping vibrations of bodies[P]. U.S:989958, 1909.3
[2] J.Ormnodroyd, J.P.Den Hartog. The Theory of the dynamic vibration absorber[J]. Journal of Applied Mechanics, 1928, 50: 9-22
[3] Hahnkamm.E. Die Dampfung von Fundamentschwingungen bei veranderlicher Erregerfrequenz[J]. Ingenieur Archiv,1933,4: 191-201
[4] BROCK J E. A note on the damped vibration absorber[J]. ASME Joural of Applied Mechanics, 1946, 68: A-284
[5] Den Hartog J P. Mechanial Vibrations [M]. New York: McGraw-Hill Book Company, fourth  edition,1956
[6] 张阿舟,诸德超,姚起航等. 实用振动工程—振动控制与设计[M].北京:航空工业出版社,1997
A-zhou Zhang, De-chao Zhu, Qi-hang Yao etc. Practical vibiration engineering—Control and design of vibration[M].Beijing: Aviation Industry Press 1997
[7] Hua-xia Deng, Xing-long Gong1 and Lian-hua wang. Development of an adaptive tuned vibration absorber with magnetorheological elastomer [J]. Smart Mater.Struct, 2006,15:N111-N116
[8] Xianzhou Zhang, Weihua Li*, X.L. Gong. An effective permeability model to predict field-dependent modulus of magnetorheological elastomers[J]. Communications in Nonlinear Science and Numerical Simulation 2008,13:1910–1916
[9] 龚兴龙,邓华夏,李剑锋等. 磁流变弹性体及其半主动吸振技术[J].中国科学技术大学学报. 2007.37(10): 1192-1203
Xing-long GONG, Hua-xia DENG, Jian-feng LI etc. Magnetorheological elastomers and corresponding
sem-i active vibration absorption technology[J]. Journal of University of Science and Technology of China 2007.37(10):1192-1203
[10] 龚兴龙,李剑锋,张先舟等.磁流变弹性体力学性能测量系统的建立[J]. 功能材料. 2006,05:733-735
Xing-long GONG, Jian-feng LI, Xian-zhou ZHANG etc. Development of testing system for properties of magnetorheological elastomers[J]. Journal of Functional Materials. 2006,05:733-735
[11] 秦春云.基于磁流变弹性体(MRE)的半主动纵振吸振器研究[D]. 上海:上海交通大学机械与动力工程学院,1983
Chun-yun Qin. Research of semi-active longitudinal dynamic vibration absorber based on magnetorheological elastomer[D]. Shanghai: School of Mechanical Engineering, Shanghai Jiao Tong University 1983
[12] 方坤伦.磁流变弹性体吸振器[D]. 南京:南京理工大学,2013
Kun-lun Fang, Research of magnetorheological elastomer vibration absorber[D]. Nanjing: Nanjing University of Science and Technology 2013
[13] Davis L. C , Model of magnetorheological elastomers [J]. Appl. Phys. 1999,85:3348–3351
[14] Qiang Gao, Chendong Duan, Xiangbo Fang.  Resonance reduction of primary system using variable mass tuned vibration absorber[J]. Noise Control Engineering Journal 2014, 62(7):138-144

PDF(1835 KB)

574

Accesses

0

Citation

Detail

段落导航
相关文章

/