[1] 谢建华, 文桂林,肖建. 两自由度碰撞振动系统分叉参数的确定[J]. 振动工程学报, 2001, 14(3): 249-253.
XIE Jian-hua, WEN Gui-lin, XIAO Jian. Criteria of bifurcation parameters of vibro-impact system with two-degree-of-freedom [J].
Journal of Vibration Engineering, 2001, 14(3):249-253.
[2] 赵文礼,周晓军. 二自由度含间隙碰撞振动系统的分岔与混沌[J]. 浙江大学学报: 工学版, 2006, 40(8): 1435-1438.
ZHAO Wen-li, ZHOU Xiao-jun. Bifurcation and chaos of impact vibration system with two degrees of freedom and clearance[J]. Journal of Zhejiang University: Engineering Science, 2006, 40(8): 1435-1438.
[3] 张有强,丁旺才. 干摩擦对碰撞振动系统周期运动的影响分析[J]. 振动与冲击, 2009, 28(6): 110-112.
ZHANG You-qiang, DING Wang-cai. Study on effect of dry friction on periodic motion of impact vibration system[J]. Journal of Vibration and Shock, 2009, 28(6): 110-112.
[4] 田海勇, 刘卫华,赵日旭. 随机干扰下碰撞振动系统的动力学分析[J]. 振动与冲击, 2009, 28(9): 163-167.
TIAN Hai-yong, LIU Wei-hua, ZHAO Ri-xu. Dynamic analysis of a vibro-impact system with random disturbance[J]. Journal of Vibration and Shock, 2009, 28(9): 163-167.
[5] 刘中华, 黄志龙,朱位秋. 二自由度碰撞振动系统的随机响应[J]. 振动工程学报, 2002, 15(3): 257-261.
LIU Zhong-hua, HUANG Zhi-long, ZHU Wei-qiu. Stochastic response of two-degree-of-freedom vibro-impact system[J]. Journal of Vibration Engineering, 2002, 15(3): 257-261.
[6] Jing H S, Sheu K C. Exact stationary solutions of the random response of a singe-degree-of-freedom vibro-impact system[J]. Journal of Sound and Vibration, 1990, 141(3): 363-373.
[7] Dimentberg M F, Iourtchenko D V. Random vibrations with impacts: A review[J]. Nonlinear Dynamics, 2004, 36(2-4): 229-254.
[8] McMillan A J, Aceves C M, Sutcliffe M P F. Moderate energy impact analysis combining phenomenological contact law with localised damage and integral equation method. International Journal of Impact Engineering, 2012, 43: 29-39.
[9] Xu M, Wang Y, Jin X L, Huang Z L. Incorporating dissipated impact into random vibration analyses through the modified Hertzian contact model[J]. ASCE Journal of Engineering Mechanics, 2013, 139(12): 1736-1743.