针对低频结构振动控制,设计了一种质量放大局域共振型声子晶体。基于周期结构的Bloch定理和有限元方法研究了无限声子晶体的能带特性,同时基于有限元法研究了弹性波在有限周期结构中的传播特性。在此基础上,对声子晶体质量放大带隙与局域共振带隙的形成机理和带隙特性进行了研究。最后以梁框架结构低频减振为目标,将设计的质量放大局域共振声子晶体嵌入框架结构中,综合应用声子晶体带隙特性和粘弹性材料阻尼特性,实现低频宽带振动抑制效果。进一步,针对框架结构一阶固有频率,进行声子晶体结构优化设计,实现了一阶固有频率处振动的高量级抑制,并设计制备实验样件,进行实验验证。结果表明,这种质量放大局域共振声子晶体可以为结构低频减振提供一种新的实现方法。
Abstract
For low frequency structural vibration reduction, a type of Inertial Amplification Locally Resonant Phononic Crystals (IALRPC) is designed in this paper. Finite Element Method (FEM) in conjunction with Bloch theory is used to study the band structure of IALRPC and the wave transmission in finite IALRPC is also analyzed using FEM. Based on this, the band gaps induced by inertial amplification and by locally resonant mechanism are analyzed and compared. Considering the vibration reduction of a beam frame structure, IALRPC is designed to embed into the frame and significant low frequency vibration reduction is found due to the band gaps of the IALRPC and the introduction of damping by the viscoelastic materials. Furthermore, the design of the IALRPC is optimized to achieve full suppression of the fundamental mode of the frame. Experimental specimen is manufactured and tested. The results show that the IALRPC proposed in this paper can provide an effective new measure for low frequency reduction.
关键词
质量放大 /
局域共振 /
声子晶体 /
振动控制
{{custom_keyword}} /
Key words
inertial amplification /
locally resonant /
phononic crystals /
vibration control
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Liu Z Y, Zhang X, Mao Y, et al., Locally resonant sonic materials [J]. Science, 2000,289(5485): 1734-1736.
[2] Huang H, Sun C, Locally resonant acoustic metamaterials with 2D anisotropic effective mass density[J]. Philosophical Magazine, 2011,91(6) : 981-996.
[3] Huang G L, Sun C T, Band gaps in a multi-resonator acoustic metamaterial[J]. Journal of Vibration and Acoustics 2010,132(3) : 031003.
[4] Sheng P, Mei J, Liu Z, et al., Dynamic mass density and acoustic, metamaterials [J].Physics Review B, 2007, 394 (2):256-261
[5] 王刚, 声子晶体局域共振带隙机理及减振特性研究[D].长沙:国防科学技术大学,2005.
Wang G, Research on the Mechanism and the Vibration Attenuation Characteristic of Locally Resonant Band Gap in Phononic Crystals[D].Changsha: National University of Defense Technology (2005)
[6] 肖勇, 局域共振型结构的带隙调控与减振降噪特性研究[D].长沙:国防科学技术大学,2012.
Xiao Y, Locally Resonant Structures: Band Gap Manipulation and Properties of Vibration and Noise Reduction[D]. Changsha: National University of Defense Technology (2012)
[7] Liu X N, HU G K, Huang G L, et al., An elastic metamaterial with simultaneously negative mass density and bulk modulus[J]. Applied Physics Letters,2011,98(25):251907
[8] Yap H W, Lakes R S, Negative stiffness and enhanced damping of individual multi-walled carbon nanotubes[J]. Physics Review B, 2008(77):045423.
[9] Lakes R S, Extreme Damping in Composite Materials with a Negative Stiffness Phase[J]. Physics Review Letters, 2001,86(13):2897-2900.
[10] Lakes R S, Lee T., Extreme damping in composite materials with negative stiffness inclusions. Nature, 2001, 410 (3): 565-567.
[11] Wang Y C, Swadener J G, Lakes R S, Two-dimensional viscoelastic discrete triangular system with negative-stiffness components[J]. Philosophical Magazine Letters, 2006. 86(2):99-112.
[12] Wang Y, Lakes R S , Stable extremely-high-damping discrete viscoelastic systems due to negative stiffness elements[J]. Applied Physics Letters, 2004. 84(22):4451-4453.
[13] Baravelli E, Carrara M, Ruzzene M, High stiffness-high damping chiral metamaterial assemblies for low-frequency applications[R]. Health Monitoring of Structural and Biological Systems, 8695.California USA: 2013:86952
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}