根据非平稳过程的进化谱理论,导出基于TARMA模型的非平稳脉动风速模拟式。基于模拟解析式,得到一些空间点非平稳下击暴流风速的模拟时间序列;运用经验模式分解(EMD)和基于粒子群优化(PSO)的最小二乘支持向量机(LSSVM)(简称为PSO—LSSVM)算法,经MATLAB平台编制程序,根据上下空间点风速样本预测出中间高度处的非平稳下击暴流风速时程。通过功率谱、自相关和互相关函数预测值与模拟值的比较及平均误差(AE)、均方根误差(MSE)和相关系数(R)的评价,验证了基于时变ARMA模型和EMD-PSO-LSSVM算法的下击暴流风速模拟与预测的可行性。
Abstract
Following the theory of evolutionary power spectral density for nonstationary processes, the formula of the time-varying auto regressive moving average (ARMA) model, referred to as TARMA, have been derived to simulate nonstationary downburst wind velocity. The simulation of nonstationary downburst wind velocity time history at some space points was carried out using TARMA. By resorting to Empirical Mode Decomposition (EMD) and the particle swarm optimization (PSO) based least squares support vector machines (LSSVM) as well as programming through MATLAB, the prediction of nonstationary downburst wind velocity time history at the middle space points was then accomplished through the nonstationary downburst wind velocity samples at the upper and lower two space points. It has been corroborated that the TARMA and EMD-PSO-LSSVM algorithm based simulation and prediction is feasible for nonstationary downburst wind velocity, through the comparison of the simulated and target values corresponding to the power spectrum, autocorrelation and cross-correlation functions, respectively.
关键词
下击暴流 /
预测 /
时变ARMA /
经验模式分解 /
最小二乘支持向量机
{{custom_keyword}} /
Key words
Downbursts /
Prediction /
Time-varying ARMA /
Empirical Mode Decomposition /
Least squares support vector machines
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Savory Eric, Parke Gerard AR, Zeinoddini Mostafa, Toy Norman, Disney Peter. Modelling of tornado and microburst-induced wind loading and failure of a lattice transmission tower. Engineering Structures, 2001; 23(4): 36-75.
[2] Chen L, Letchford CW. A deterministic-stochastic hybrid model of downbursts and its impact on a cantilever structure. Engineering Structures, 2004; 26(5): 619-26.
[3] 瞿伟廉, 王锦文. 下击暴流风荷载的数值模拟. 武汉理工大学学报, 2008; 30(2): 70- 74.
Qu Wei-Lian, Wang Jin-wen. Numerical Simulation of Downburst Wind Loads. Journal of Wuhan University Technology, 2008; 30(2): 70- 74.
[4] 王昕,楼文娟,李宏男,陈勇. 雷暴冲击风作用下高耸输电塔风振响应. 浙江大学学报(工学版), 2009; 43(8): 1520-1525.
Wang Xin, Lou Wen-juan, Li Hong-nan, Chen Yong.Wind-induced dynamic response of high-rise transmission tower under downburst wind load. Journal of Zhejiang University (Engineering Science), 2009; 43(8): 1520-1525.
[5] 李春祥,李锦华, 于志强. 输电塔线体系抗风设计理论与发展. 振动与冲击, 2009; 28(10): 15- 25.
Li Chun-xiang, Li Jin-hua, Yu Zhi-qiang. A review of wind-resistant design theories of transmission tower-line systems. Journal of Vibration and Shock, 2009; 28(10): 15- 25.
[6] 李春祥,刘晨哲, 申建红, 李锦华. 土木工程下击暴流风速数值模拟的研究. 振动与冲击, 2010; 29(10): 49-54.
Li Chun-xiang, Liu Chen-zhe, Shen Jian-hong, Li Jin-hua. Numerical simulations of downburst wind speeds in civil engineering. Journal of Vibration and Shock, 2010; 29(10): 49-54.
[7] 张文福,谢丹,刘迎春,计静. 下击暴流空间相关性风场模拟. 振动与冲击, 2013; 32(10): 12-16.
Zhang Wen- fu, Xie Dan, Liu Ying-chun, Ji Jing. Simulation of downburst wind field with spatial correlation. Journal of Vibration and Shock, 2013; 32(10): 12-16.
[8] 李锦华, 吴春鹏, 陈水生. 下击暴流非平稳脉动风速数值模拟[J]. 振动与冲击, 2014; 33(14): 54-60.
Li Jin-hua,Wu Chun-peng, Chen Shui-sheng. Simulation of non-stationary fluctuating wind velocity in downburst. Journal of Vibration and Shock, 2014; 33(14): 54-60.
[9] Wang Lijuan, McCullough Megan, Kareem Ahsan. A data-driven approach for simulation of full-scale downburst wind speeds. Journal of Wind Engineering and Industrial Aerodynamics, 2013; 123: 171–190.
[10] Li Jinhua, Li Chunxiang, He Liang, Shen Jianhong. Extended modulating functions for simulation of wind velocities with weak and strong nonstationarity. Renewable Energy, 2015, 83: 384-397.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}