随机激励下汽车非线性悬架系统的混沌研究

牛治东1,吴光强1,2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (17) : 39-43.

PDF(1350 KB)
PDF(1350 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (17) : 39-43.
论文

随机激励下汽车非线性悬架系统的混沌研究

  • 牛治东1,吴光强1,2
作者信息 +

A chaos research on vehicle nonlinear suspension system under stochastic excitation

  • NIU Zhi-Dong1,WU Guang-qiang1,2
Author information +
文章历史 +

摘要

研究了具有迟滞非线性特性的单自由度悬架模型在随机激励下的混沌运动。运用随机梅尔尼科夫(Melnikov)方法,推导并得到有界噪声激励下系统在均方意义下发生混沌运动的临界条件,讨论了悬架迟滞参数对系统混沌运动的影响,并运用庞加莱截面、功率谱和最大李雅普诺夫指数(LLE)进行了数值验证,研究表明,悬架系统存在混沌运动。分析了C级路面激励下,汽车单自由度悬架迟滞非线性系统的随机响应,并运用庞加莱截面、功率谱和最大李雅普诺夫指数进行了数值模拟,揭示了此类系统在随机路面激励下发生混沌运动的可能性。

Abstract

Chaotic motions of single DOF of vehicle suspension with nonlinear hysteresis characteristics under random excitation were studied. By using stochastic Melnikov method, the critical condition of the system under bounded noise was derived in the mean square sense, it discussed the influence of suspension hysteresis parameters on the chaotic motion, and numerical validation was carried out by using the Poincaré section, power spectrum and largest Lyapunov exponent (LLE), the results showed that the existence of chaotic motion. It analysed the single DOF of vehicle suspension with nonlinear hysteresis characteristics under the C-class road excitation by using the Poincaré section, power spectrum and largest Lyapunov exponent, the numerical simulation revealed the possibility of the occurrence of chaotic motion in such system under stochastic road excitation.
 

关键词

随机路面 / 迟滞非线性 / 汽车悬架 / 混沌

Key words

stochastic road / hysteretic nonlinearity / vehicle suspension / chaotic

引用本文

导出引用
牛治东1,吴光强1,2. 随机激励下汽车非线性悬架系统的混沌研究[J]. 振动与冲击, 2016, 35(17): 39-43
NIU Zhi-Dong1,WU Guang-qiang1,2. A chaos research on vehicle nonlinear suspension system under stochastic excitation[J]. Journal of Vibration and Shock, 2016, 35(17): 39-43

参考文献

[1] 杨绍普, 李韶华, 郭文武. 随机激励滞后非线性汽车悬架系统的混沌运动[J]. 振动. 测试与诊断, 2005, 25(1): 22-25.
Yang Shaopu, Li Shaohua, Guo Wenwu. Chaos in Vehicle Suspension System with Hysteretic Nonlinearity [J]. Journal of Vibration, Measurement & Diagnosis, 2005, 25(1):22-25.
[2] 王振佩, 徐伟. 有界噪声激励下 Josephson 系统的混沌运动[J]. 应用力学学报, 2012, 29(001): 43-47.
Wang Zhenpei, Xu Wei. Chaotic Motion of a Josephson System Excited by Bounded Noise [J]. Chinese Journal of Applied Mechanics, 2012, 29(001): 43-47.
[3] 刘利琴, 唐友刚, 吴志强. 横浪中船舶的随机混沌运动[J]. 工程力学, 2008, 25(6): 204-208.
Liu Liqin,Tang Yougang, Wu Zhiqiang. Stochastic Chaotic Motion of Ships in Beam Seas [J]. Engineering Mechanics, 2008, 25(6): 204-208.
[4] 冯俊, 徐伟, 顾仁财, 狄根虎. 有界噪声与谐和激励联合作用下 Duffing-Rayleigh 振子的 Melnikov 混沌[J]. 物理学报, 2011, 60(9): 090507(1-8).
Feng Jun, Xu Wei, Gu Rencai, DI Genhu. Melnikov Chaos in Duffing-Rayleigh Oscillator Subjected to Combined Bounded Noise and Harmonic Excitations [J]. Acra Phys. Sin. 2011, 60(9): 090507(1-8)
[5] Chen Lijie. Controlling Chaos in Automobile Suspension System with Nonlinear Feedback Controller [CA]. 2nd International Conference on Precision Mechanical Instruments and Measurement Technology, ICPMIMT 2014. 1103-1108.
[6] Dostal, L. Kreuzer, E. Surf-Riding Threshold of Ships in Random Seas [J]. Proceedings in Applied Mathematics and Mechanics, 2013, 13(1): 383-384.
[7] Pérez-Polo, Manuel F, Pérez-Molina, Manuel. Steady-state self-oscillations and chaotic behavior of a controlled electromechanical device by using the first Lyapunov value and the Melnikov theory [J]. Journal of Sound and Vibration, 2014, 333(4): 1163-1181.
[8] 李韶华, 杨绍普. 滞后非线性模型的研究进展[J]. 动力学与控制学报, 2006, 4(1): 8-15.
Li Shaohua, Yang Shaopu. Research Status of Hysteretic Nonlinearity Models [J].Journal of Dynamic and Control, 2006, 4(1): 1373-1383.
[9] 龚宪生, 唐一科. 一类迟滞非线性振动系统建模新方法[J]. 机械工程学报, 1999, 35(4): 11-14.
Gong Xiansheng, Tang Yike. New Method for Modeling of a Nonlinear Vibration System with Hysteresis Characteristics [J]. Chinese Journal of Mechanical Engineering. 1999, 35(4): 11-14.
[10] Liu W Y, Zhu W Q, Huang Z L. Effect of bounded noise on chaotic motion of duffing oscillator under parametric excitation [J]. Chaos, Solitons & Fractals, 2001, 12(3): 527-537.
[11] 余志生.汽车理论[M]. 机械工业出版社, 2009.
Yu Zhisheng. The Theory of Automobile [M]. Machinery Industry Press, 2009.
[12] 盛云, 吴光强. 汽车非线性悬架的混沌研究[J]. 汽车工程, 2008 (1): 57-60.
Sheng Yun, Wu Guangqiang. A Chaos Research on Vehicle Nonlinear Suspension System [J]. Automotive Engineering,2008,30(1):57-60.
[13] 李韶华, 杨绍普. 拟周期激励下滞后非线性汽车悬架的混沌[J]. 振动与冲击, 2003, 22(3): 61-64.
Yang Shaopu, Li Shaohua. Chaos in Suspension System with Hysteretic Nonlinearity under Quasi-period Excitation [J]. Journal of Vibration and Shock, 2003, 22(3):61-64.
[14] 朱位秋. 非线性随机动力学与控制: Hamilton 理论体系框架[M]. 科学出版社, 2003
Zhu Weiqiu. Nonlinear Stochastic Dynamics and Control: Hamilton Theory Framework [M]. Science Press, 2003.

PDF(1350 KB)

721

Accesses

0

Citation

Detail

段落导航
相关文章

/