计及受电弓幅频特性的受电弓参数与吊弦间距匹配研究

姜静,刘志刚,鲁小兵,段甫川,宋洋

振动与冲击 ›› 2016, Vol. 35 ›› Issue (18) : 134-139.

PDF(1979 KB)
PDF(1979 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (18) : 134-139.
论文

计及受电弓幅频特性的受电弓参数与吊弦间距匹配研究

  • 姜静,刘志刚,鲁小兵,段甫川,宋洋
作者信息 +

Coupling performance between pantograph parameters and dropper spacing considering the amplitude-frequency characteristics of the pantograph

  • JIANG Jing, LIU Zhigang, LU Xiaobing, DUAN Fuchuan, SONG Yang
Author information +
文章历史 +

摘要

首先推导了受电弓的稳态幅频特性,结合对接触压力波动原因的分析,得出了受电弓参数与吊弦频率的匹配关系;然后逐一改变受电弓参数,分析受电弓幅频特性,可得受电弓弓头质量和刚度对受电弓幅频特性的影响明显;最后在建立的弓网动态模型中,分别调整受电弓弓头质量和刚度,统计得到接触压力标准差,验证了匹配的效果。研究结果表明,在运行中受电弓通过吊弦间隔的频率若为f ,调整受电弓的参数,使受电弓幅频特性在频率f处有极小值,能有效降低接触压力的波动,有利于改善受流。该匹配关系可为弓网系统设计、选型和评价提供参考。

Abstract

The amplitude-frequency characteristics of a pantograph were derived.Based on the analysis of force fluctuation, the coupling relationship between pantograph parameters and droppers was obtained.Then the variation of the amplitude- frequency characteristics was analyzed by changing pantograph parameters individually.It is found the influence of the collector heads mass and stiffness on the amplitude-frequency characteristics is obvious.The coupling relationship in the pantograph- catenary simulation system was validated by observing the variation of contact force standard deviation with different mass and stiffness of the collector head respectively.Adjusting the pantograph parameters to make the frequency, at which the response on the amplitude-frequency curve reaches its minimum, be equal to the frequency of the droppers, the fluctuation of contact force would be lowered, which means the current collection quality is improved to some extent.The coupling relationship proposed can be referential to the design, selection and performance assessment of pantograph-catenary systems.

关键词

接触网 / 受电弓 / 幅频特性 / 接触压力波动 / 匹配

Key words

catenary / pantograph / amplitude-frequency characteristics / force fluctuation / coupling

引用本文

导出引用
姜静,刘志刚,鲁小兵,段甫川,宋洋. 计及受电弓幅频特性的受电弓参数与吊弦间距匹配研究[J]. 振动与冲击, 2016, 35(18): 134-139
JIANG Jing, LIU Zhigang, LU Xiaobing, DUAN Fuchuan, SONG Yang. Coupling performance between pantograph parameters and dropper spacing considering the amplitude-frequency characteristics of the pantograph[J]. Journal of Vibration and Shock, 2016, 35(18): 134-139

参考文献

[1]  于万聚, 高速电气化铁路接触网[M], 成都: 西南交通大学出版社, 2003.
[2]  Park T J, Han C S, Jang J H. Dynamic sensitivity analysis for the pantograph of a high-speed rail vehicle[J]. Journal of Sound and Vibration, 2003, 266(2): 235-260.
[3]  Lee J H, Kim Y G, Paik J S, et al. Performance evaluation and design optimization using differential evolutionary algorithm of the pantograph for the high-speed train[J]. Journal of mechanical science and technology, 2012, 26(10): 3253-3260.
[4]  Zhang W H, Mei G M, Wu X J, et al. A study on dynamic behavior of pantographs by using hybrid simulation method[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2005, 219(3): 189-199.
[5]  汪宏睿, 刘志刚, 宋洋, 等. 高速铁路接触线气动参数仿真及风振响应研究[J]. 振动与冲击, 2015, 34(6): 6-12.
    Wang Hong-rui, Liu Zhi-gang, Song Yang, et al. Aerodynamic parameters simulation and wind-induced vibration responses of contact wire of high-speed railway[J]. Journal of Vibration and Shock, 2015,34(6):6-12.
[6]  Song Y, Liu Z, Wang H, et al. Nonlinear modelling of high-speed catenary based on analytical expressions of cable and truss elements[J]. Vehicle System Dynamics, 2015 (ahead-of-print): 1-25.
[7]  李敏, 李丰良, 马俊. 高速受电弓的力学模型及运动微分方程[J]. 铁道科学与工程学报, 2005, 2(3): 83-87.
LI Min, Li Feng-liang, Ma Jun. Mechanical models and differential equations of motion for high speed pantograph[J]. Journal of Railway Science and Engineering, 2005, 2(3): 83-87.
[8]  程维. 电气化铁道受电弓-接触网系统受流特性研究[D]. 成都: 西南交通大学, 2004: 6-62.
[9]  Zhou N, Zhang W. Investigation on dynamic performance and parameter optimization design of pantograph and catenary system[J]. Finite elements in analysis and design, 2011, 47(3): 288-295.
[10] Poetsch G, EVANS J, Meisinger R, et al. Pantograph/catenary dynamics and control[J]. Vehicle System Dynamics, 1997, 28(2-3): 159-195.
[11] 李瑞平, 周宁, 吕青松, 等. 横风环境中弓网动力学性能分析[J]. 振动与冲击, 2014, 33(24): 39-44.
    Li RP, Zhou N, Lv QS, et al. Pantograph-catenary dynamic behavior under cross wind[J]. Journal of Vibration and Shock, 2014,33(24):39-44.
[12] 郭京波, 杨绍普, 高国生. 变刚度弓网系统主动控制研究[J]. 振动与冲击, 2005, 24(2): 9-11.
    Guo Jing-bo, Yang Shao-pu, Gao Guo-sheng. Research on active control of the pantograph-catenary system with varying stiffness[J]. Journal of Vibration and Shock, 2005, 24(2): 9-11.
[13] 李瑞平, 周宁, 张卫华, 等. 高速列车过隧道对弓网动力学影响分析[J]. 振动与冲击, 2013, 32(6): 33-37.
Li RP. Zhou N, Zhang WH, et al. Influence of high-speed trains passing through tunnel on pantograph-catenary dynamic behaviors[J]. Journal of Vibration and Shock, 2013, 32(6):33-37.
[14] Pomb J. Multiple pantograph interaction with catenaries in high-speed trains[J]. Journal of Computational and Nonlinear Dynamics, 2012, 7(4):1-7.
[15] [德]Kie β ling, Pushchmann, Schmieder. 电气化铁道接触网[M]. 中铁电气化局集团有限公司[译]. 北京:中国电力出版社,2004.
[16] 宋洋, 刘志刚, 汪宏睿, 等. 接触网三维模型的建立与风偏的非线性求解[J]. 铁道学报, 2015 37(4): 30-38.
    Song Y, Liu ZG, Wang HR, et al. Establishment of 3D model for catenary and nonlinear solution for its wind deflection[J]. Journal of the China Railway Society, 2015, 37(4):30-38.
[17] 宋洋, 刘志刚, 汪宏睿, 等. 脉动风下高速铁路接触网抖振对弓网受流性能的影响[J]. 铁道学报, 2014, 36(6): 27-34.
    Song Y, Liu ZG, Wang HR, et al. Influence of high-speed railway catenary buffeting on pantograph catenary current collection under fluctuating wind[J]. Journal of the China Railway Society, 2014, 6: 007.
[18] Aboshi M, Manabe K. Analyses of contact force fluctuation between catenary and pantograph[J]. Quarterly Report of RTRI, 2000, 41(4): 182-187.
[19] Jung S P, Kim Y G, Paik J S, et al. Estimation of dynamic contact force between a pantograph and catenary using the finite element method[J]. Journal of computational and nonlinear dynamics, 2012, 7(4): 041006.

PDF(1979 KB)

Accesses

Citation

Detail

段落导航
相关文章

/