作为未来化战争条件下打击地下深层战略目标的一种重要武器装备,“上帝之杖”天基动能武器对维护国家利益和领土完整意义重大。首先,综合考虑了外界温度、压强、海拔高度、大气密度、飞行速度等因素对弹体在大气层中所受空气阻力的影响,分析计算出“上帝之杖”动能弹的入地速度达3401.7m/s。目前,受到实验技术和方法的限制,只有Gold取得了几组动能弹高速侵彻混凝土靶的实验数据,且最高侵彻速度不足2km/s,对诸如“上帝之杖”这么高侵彻速度的动能弹侵彻混凝土靶的实验研究还是空白。因此,进行了“上帝之杖”动能弹侵彻C60半无限混凝土靶的数值模拟和理论研究。研究结果表明:数值模拟所得的最终侵彻深度(18.9m)与理论计算结果(17.3m)的误差在允许的范围内,混凝土靶的最终开坑直径达7.333倍弹径;不同于刚性弹侵彻过程中侵彻速度持续衰减的特点,“上帝之杖”超高速动能弹侵彻的瞬态高压阶段弹头侵彻速度锐减,动能损失率极高,相应侵彻深度小;稳定侵彻阶段弹头侵彻速度和弹长消蚀速度保持稳定,弹体动能损失率基本不变,侵彻深度却线性增加;当动能弹着靶速度足够大时,最终侵彻深度主要受弹靶材料密度控制,受弹靶强度影响不大,高密度分层防护结构在抗超高速动能弹侵彻领域优势显著。
Abstract
In the future war, “gold stick” space-based kinetic energy weapons plays an important role in attacking deep underground targets, and it is also significant for safeguarding national interests and territorial integrity. First, considering the impact of outside temperature, pressure, altitude, atmospheric density, flight speed and other factors on the air friction, this paper analyzed that the “god stick” kinetic energy projectile’s speed would arrive 3401.7m/s. Currently, limited by experimental techniques and methods, only Gold achieved a few groups of experimental datas,of high-speed kinetic energy projectile penetrating into concrete targets, and the highest penetration velocity is less than 2km / s, such as "God stick" ultra-high-speed kinetic energy projectile penetrating into concrete targets’ experimental study is still blank. Therefore, the article completed theory and numerical simulation analysis of “god stick” penetrating a semi-infinite concrete targets. The result shows that: the final penetration depth obtained by numerical simulation(18.9m) agrees well with the theoretical results(17.3m), the finally crater diameter of concrete targets reaches 7.333 times of the diameter of bomb; comparing with the continue declined velocity of rigid projectile, during the process of “god stick” hypervelocity penetration , transient high pressure phase has quickly dropped velocity of warhead, high kinetic energy loss rate, small corresponding penetration depth, stable penetration stage has stable warhead speed, stable rod length maceration, basically unchanged kinetic energy loss rate, and linearly increasing depth of penetration. When the impact speed of projectile arrives large enough, the final penetration depth is mainly affected by the density of projectile and target materials, not by the strength. So the high-density stratification protective structure has great advantages in anti-hypervelocity penetration areas.
关键词
&ldquo /
上帝之杖&rdquo /
;超高速侵彻;混凝土
{{custom_keyword}} /
Key words
“god stick” /
hypervelocity penetration /
concrete
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王明建, 范小虎, 黄雷. 国外天基武器系统及其关键技术[J]. 飞航导弹, 2014, 08期:51-53.
Wang Ming-jian, Fan Xiao-hu, Huang Lei. Foreign Space-based Weapon Wystem and Key Technologies[J]. Aerodynamic Missile, 2014, 08: 51-53.
[2] 安慧. 美军太空对地打击技术的发展[J]. 国际太空, 2010, 第7期:1-7.
An Hui. The development of US Space-to-ground Combat Technology[J]. International Space,2010,07:1-7.
[3] 张丹丹, 李娜,周伟.美国“上帝之杖”天基动能武器系统[J].外军导弹装备发展动态,2013(4):1-6.
Zhang Dandan, Li Na, Zhou Wei. American " Rod of God " Space-Based Kinetic Energy Weapon Systems[J]. Developments of Foreign Military Missile Equipment, 2013(4):1-6.
[4] Peng Z, Jingjing M U, Zhang L, et al. Spacecraft Attitude and Orbital Coupling Dynamics and Control Based on Dual Quaternion[J]. Journal of Spacecraft Tt & C Technology, 2013,11:60-68.
[5] 丁洪波, 蔡洪, 张士峰,等. 高超声速滑翔式再入飞行器最大航程飞行轨迹分析[J]. 国防科技大学学报, 2009, 06期(6):67-72
Ding Hong-bo, Cai Hong, Zhang Shi-feng , et al. Hypersonic Gliding Reentry Vehicle Maximum Range Flight Trajectory Analysis[J]. Journal of University of Defense Technology, 2009, 06 (6): 67-72.
[6] 杨嘉墀. 航天器轨道动力学与控制[M]// 宇航出版社, 2001.
Yang Jia-chi. Spacecraft Orbital Dynamics and Control[M] // Aerospace Press, 2001.
[7] 杨昌麟, 范景莲, 郑春晓, 等. 高应变率下热挤压态细晶钨合金的动态力学性能及失效行为[J]. 稀有金属材料与工程, 2014, 12: 047.
Yang Chang-lin, Fan Jing-lian, Zheng Chun-xiao, et al. Dynamic Mechanical Properties and Failure Behavior of the Rapid Hot Extruded Fine-Grained Tungsten Heavy Alloy at High Strain Rates[J]. Rare Metal Materials and Engineering, 2014, 12: 047.
[8] 李茂生, 陈栋泉. 高温高压下材料的本构模型[J]. 高压物理学报, 2001, 15(1): 23-31.
Li Maosheng, Chendongquan.A Constitutive Model for Materials under High-Temperature and Pressure. [J].Chinese Journal of High Pressure Physics, 2001, 15(1): 23-31.
[9] 刘海燕, 宋卫东, 栗建桥. 钨合金动态力学性能的三维数值模拟研究[J]. 材料工程, 2012 (6): 71-75.
Liu Hai-yan, Song Wei-dong, Li Jian-qiao. Three Dimensional Numerical Analysis on Dynamic Mechanical Property of Tungsten Alloys[J]. Journal of Materials Engineering, 2012 (6): 71-75.
[10] WANG Yu-tao, LIU Dian-shu, LI Sheng-lin, JIANG Ya-qin. School of Mechanics amp Civil Engineering. Dynamic performance of concrete based on a Φ75mm SHPB system under high temperature[J]. Journal of Vibration & Shock, 2014,17:12-17.
[11] 刘海峰, 韩莉. 冲击荷载作用下混凝土动态力学性能数值模拟研究[J]. 固体力学学报, 2015, 02期:145-153.
Liu Hai-feng ,Han Li. Numerical Simulation Reaearch on Dynamic Mechaical Behaviors of Concrete Subjected Toimpact Loading[J]. Chinese Journal of Soild Mechanics, 2015, 02期:145-153.
[12] 刘鹏, 关萍, 王怀亮. 应变率对混凝土动态强度性能影响的研究进展[J]. 大连大学学报, 2009, 第6期(6):79-84.
Liu Peng, Guan Ping, Wang Huai-liang. Research Progress of Strainrateon Dynamic Strength Properties of Concrete[J]. Journal of Dalian University,2009,6(6):79-84.
[13] 张宗刚, 许金余, 苏灏扬,等. 高温下混凝土动态强度特性[J]. 硅酸盐通报, 2015, 02期(34),501-505.
Zhang Zong-gang, Xu Jin-yu, Sun Hao-yang, et al. Dynamic Strength Property of Concrete at Exposure to Elevated Temperature[J]. Bulletin of the Chinese Ceramic Society,2015,02(34),501-505.
[14] Gold V M, Vradis G C, Pearson J C. Concrete Penetration by Eroding Projectiles: Experiments and Analysis[J]. Journal of Engineering Mechanics, 2014, 122(2):145-152.
[15] 黄风雷. 高速长杆弹侵彻半无限混凝土靶的理论分析[J]. 北京理工大学学报, 2010, 第1期:10-13.
Huang Feng-lei. High Velocity Long Rod Projectile’s Penetration into Semi-Infinite Concrete Targets[J]. Transactions of Beijing Institute of Technology,2010,1(30):10-13.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}