为研究铝合金板式节点网壳结构阻尼特性,填补现行设计规范对铝合金结构阻尼比取值的空白,对一铝合金板式节点网壳的阻尼比进行了实测。采用锤击法对结构施加动力激励,由拾振器记录结构各点的加速度响应。通过FFT变换得出节点加速度响应频谱,采用半功率带宽法估算结构阻尼比。通过改变锤击力度、拾振器位置、敲击点位置,设计了57种工况,并测出一系列阻尼值;对所得数据进行统计分析,得出铝合金板式节点网壳阻尼比平均值,并建议此类结构阻尼比取为3.3%。运用该阻尼参数建立有限元模型,分析结构动力响应,结果表明:节点加速度响应实测曲线与有限元模型计算得到的响应曲线的峰值、周期和振动衰减规律均吻合较好,证明所测得阻尼值可为铝合金板式节点网壳的动力分析与工程设计提供依据。
Abstract
In order to investigate the damping property of aluminum alloy latticed shells with gusset joints, as well as to fill a blank in the existing design codes which do not give clear damping ratio value of this kind of structures, experimental tests were carried out on an aluminum alloy latticed shell with gusset joints.The structural dynamic responses were aroused by hammer impact, and were recorded by vibration sensors.The acceleration response frequency spectra at nodes were obtained through FFT method, and the structural damping ratio was calculated by half-power bandwidth method.In the experiments, the different strength of hummer impact, different locations of vibration sensors and different excitation places were considered, a total number of 57 test load cases were designed and executed, and a series of damping ratios were gotten from the experiments.A statistic study was carried out on the data given by the tests, then an average damping ratio was suggested for this kind of structures, that is, ξ=3.3%.A finite element model of the tested structure was established using the suggested damping ratio, and the nodal dynamic responses given by numerical analysis show good consistency with those given by the tests.It is demonstrated that the damping ratio given in the paper could serve the purpose of the dynamic response analysis and engineer design of aluminum alloy latticed shells with gusset joints.
关键词
铝合金网壳 /
板式节点 /
阻尼特性 /
半功率带宽法
{{custom_keyword}} /
Key words
aluminum alloy latticed shell /
gusset joints /
damping property /
half-power bandwidth method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 沈祖炎, 郭小农, 李元齐. 铝合金结构研究现状简述[J]. 建筑结构学报, 2008, 28(6): 100-109.
SHEN Zuyan, GUO Xiaonong, LI Yuanqi. State-of-the-arts of research on aluminum alloy structures [J]. Journal of Building Structures, 2008, 28(6): 100-109.
[2] 郭小农. 铝合金结构构件理论和试验研究[D].同济大学,2006.
GUO Xiaonong. Theoretical and Experimental Research on the Aluminum Alloy Structure Members [D]. Tongji University, 2006.
[3] 郭小农, 熊哲, 罗永峰, 等. 铝合金板式节点承载性能试验研究[J]. 同济大学学报: 自然科学版, 2014, 42(7): 1024-1030.
GUO Xiaonong, Xiong Zhe, LUO Yongfeng, et al. Experimental research on the load-bearing behavior of aluminum alloy ausset joint[J]. Journal of Tongji University: Natural Science, 2014, 42(7): 1024-1030.
[4] 郭小农, 熊哲, 罗永峰, 等. 铝合金板式节点承载力设计方法及构造要求[J]. 同济大学学报: 自然科学版, 2015, 43(1): 47-53.
GUO Xiaonong, Xiong Zhe, LUO Yongfeng, et al. The design method and detaied requirements of bearing capacity of aluminum alloy gusset joint[J]. Journal of Tongji University: Natural Science, 2015, 43(1): 47-53.
[5] 郭小农, 熊哲, 罗永峰, 等. 铝合金板式节点初始刚度[J]. 同济大学学报: 自然科学版, 2014, 42(8): 1161-1166.
GUO Xiaonong, Xiong Zhe, LUO Yongfeng, et al. Initial bending stiffness of aluminum alloy gusset joint[J]. Journal of Tongji University: Natural Science, 2015, 43(1): 47-53.
[6] 郭小农, 熊哲, 罗永峰, 等. 铝合金板式节点弯曲刚度理论分析[J]. 建筑结构学报, 2014, 35(10): 144-150.
GUO Xiaonong, Xiong Zhe, LUO Yongfeng, et al. Theoretical study on bending stiffness of aluminum alloy gusset joint[J]. Journal of building engineering, 2014, 35(10): 144-150.
[7] 曾银枝, 钱若军, 王人鹏, 等. 铝合金穹顶的试验研究[J]. 空间结构, 2005, 6(4): 47-52.
Zeng Yinzhi, Qian Ruojun, Wang Renpeng, et al. Test research on the aluminous-alloy dome[J]. Spatial Structures, 2005, 6(4): 47-52.
[8] 郭小农, 沈祖炎, 李元齐, 等. 国产结构用铝合金材料本构关系及物理力学性能研究[J]. 建筑结构学报, 2008, 28(6): 110-117.
GUO Xiaonong, SHEN Zuyan, LI Yuanqi. Stress-strain relationship and physical-mechanical properties of domestic structural aluminum alloy [J]. Journal of Building Structures, 2008, 28(6): 110-117.
[9] 郭小农, 熊哲, 罗永峰, 等. 铝合金板式节点面外初始弯曲刚度的杆件间交互影响[J]. 湖南大学学报: 自然科学版, 2015, 42(3): 36-42.
Guo Xiaonong, Xiong Zhe, Luo Yongfeng, et al. The out-of-plane initial bending stiffness interaction of members on the aluminum alloy gusset joint[J]. Journal of Hunan University (Natural Sciences), 2015, 42(3): 36-42.
[10] Zhi X, Fan F, Shen S. Elasto-plastic instability of single-layer reticulated shells under dynamic actions[J]. Thin-Walled Structures, 2010, 48(10): 837-845.
[11] 范峰, 支旭东, 沈世钊. 网壳结构强震失效机理[M]. 北京: 科学出版社, 2014.
Fan Feng, Zhi Xudong, Shen Shizhao. Failure Mechanism of Reticulated Shells under Earthquake [M]. Beijing: Science Press, 2004.
[12] 陈奎孚, 张森文. 半功率点法估计阻尼的一种改进[J]. 振动工程学报, 2002, 15(2): 151-155.
Chen Kuifu, Zhang Shenwen. Improvement on the damping estimation by haly powerpoint method[J]. Journal of vibration engineering, 2002, 15(2): 151-155.
[13] 应怀樵, 刘进明, 沈松. 半功率带宽法与 INV 阻尼计法求阻尼比的研究[J]. 噪声与振动控制, 2006, 26(2): 4-6.
Ying Huaijiao, Liu Jinming, Shen Song. Half-power bandwidth method and INV damping ration solver study[J]. Noise and vibration control, 2006, 26(2): 4-6.
[14] 董军, 邓洪洲. 结构动力分析阻尼模型研究[J]. 世界地震工程, 2000, 16(4): 63-69.
Dong Jun, Deng Hongzhou. Studies on the damping modeling for structural dynamic time history analysis[J]. World information on earthquake engineering, 2000, 16(4): 63-69.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}