柔性空间机器人基于关节柔性补偿控制器与虚拟力概念的模糊全局滑模控制及振动主动抑制

梁捷 1,2,3,陈力 1,梁频 2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (18) : 62-70.

PDF(1867 KB)
PDF(1867 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (18) : 62-70.
论文

柔性空间机器人基于关节柔性补偿控制器与虚拟力概念的模糊全局滑模控制及振动主动抑制

  • 梁捷 1,2,3 , 陈力 1   , 梁频 2
作者信息 +

Adaptive fuzzy global sliding mode control and double flexible vibration active hierarchical suppression of space robot with flexible-link and flexible-joint

  • LIANG Jie 1,2,3   CHEN Li 1  LIANG Pin 2
Author information +
文章历史 +

摘要

空间机器人系统的柔性主要体现在空间机器人的臂杆和连接各臂杆之间的铰关节。由于空间机器人系统结构的复杂性,以往研究人员对同时具有柔性关节和柔性臂的系统关注不够。为此本文讨论了参数不确定情况下柔性关节、柔性臂空间机器人系统的动力学模拟、运动控制方案设计和以及臂、关节双重柔性振动的分阶主动抑制问题。依据线动量、角动量守恒关系并基于拉格朗日方程、线性扭转弹簧及假设模态法推导了系统动力学模型。以此为基础,针对空间机器人实际应用中各关节铰具有较强柔性的情况,引入了关节柔性补偿控制器并结合奇异摄动技术将整个系统分解成独立时间尺度的电机力矩动力子系统和柔性臂子系统。 针对电机力矩动力子系统,设计了力矩微分反馈控制器来抑制关节柔性引起的系统弹性振动。针对柔性臂子系统,提出了一种基于虚拟力概念的自适应模糊全局滑模控制方案,由于运用了虚拟力的概念,从而通过仅设计一个控制输入就可达到既跟踪期望轨迹又抑制柔性臂柔性振动的控制目标。计算机数值仿真对比实验证实了该方法的可靠性和有效性。

Abstract

The flexibility of space robot system mainly embodies in arm bar of space robot and hinge joints that connect with each arm bar. Because of the complexity of space robot system structure, previous researchers paid less attention on the system which both have flexible joint and flexible arms. Thus this paper discusses dynamics simulation of flexible joints and flexible arm space robot system, motion control algorithm design and hierarchical points order active inhibition problem of arm and joints double flexible vibration that all under the situation of parameter uncertain. According to momentum and moment of momentum conservation relationship, and also based on Lagrange equations, linear torsion spring and hypothesis modal method, we herein deduce system dynamics model. On the base of it, considering about actual situation that each joint hinge has strong flexibility for space robot practical application, we herein introduce joint flexible compensation controller and combined with singular perturbation technology to decompose the whole system into motor moment power subsystem and flexible arm subsystem with independent time scale. For motor moment power subsystem, we design moment differential feedback controller to inhibit system elastic vibration which caused by joint flexibility. For flexible arm subsystem, we propose an adaptive fuzzy global sliding mode control scheme that based on the concept of virtual force. For using the concept of virtual force, we may achieve the control target that not only tracking expected trajectory, but also inhibiting flexible vibration of flexible arm by only designing a control input. Computer numerical simulation comparison experiment testifies the reliability and availability of this scheme. 

 

关键词

柔性关节柔性臂空间机器人 / 关节柔性补偿控制器 / 虚拟控制力 / 全局滑模控制 / 双柔性振动分阶主动抑制

Key words

space robot with flexible-link and flexible-joint / joint flexible compensation controller / virtual force / global sliding mode control / double flexible vibration active hierarchical suppression

引用本文

导出引用
梁捷 1,2,3,陈力 1,梁频 2. 柔性空间机器人基于关节柔性补偿控制器与虚拟力概念的模糊全局滑模控制及振动主动抑制[J]. 振动与冲击, 2016, 35(18): 62-70
LIANG Jie 1,2,3 CHEN Li 1 LIANG Pin 2. Adaptive fuzzy global sliding mode control and double flexible vibration active hierarchical suppression of space robot with flexible-link and flexible-joint[J]. Journal of Vibration and Shock, 2016, 35(18): 62-70

参考文献

[1] Pisculli A, Felicetti L, Gasbarr P, et al. A reaction-null/Jacobian transpose control strategy with gravity gradient compensation for on-orbit space manipulators[J]. Aerospace Science and Technology, 2014, 38: 30-40.
[2] Michael W, Walker. Adaptive control of space-based robot manipulators[J]. IEEE Transactions on Robotics and Automation, 1992, 7(6):828-835.
[3] Abiko S, Hirzinger G. An adaptive control for free-floating space robot by using inverted chain approach [C]. Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA: IEEE, 2007: 2236-2241.
[4] 戈新生,陈立群,吕杰. 空间机械臂非完整运动规划的遗传算法研究[J]. 宇航学报, 2005, 26(3): 262-266.
GE Xin-sheng, CHEN Li-qun, LV Jie. Nonholonomic motion planning of a space manipulator system using genetic algorithm[J]. Journal of Asronautics, 2005, 26(3): 262-266.
[5] 梁捷,陈力. 时间延迟下双臂空间机器人工作空间轨迹跟踪的改进控制方法[J]. 工程力学, 2012, 29(10): 366-371.
LIANG Jie, CHEN Li. Improved control for dual-arm space robot with time delay to track desired trajectory in inertia space [J]. Engineering Mechanics, 2012, 29(10): 366-371.
[6] Kumar A, Pathak P M, Sukavanam N. Reduced model based control of two link flexible space robot[J]. Intelligent control and automation, 2011, 2, 112-120.
[7] 王从庆, 柯昌俊. 自由浮动柔性空间双臂机器人的混合抑振控制[J]. 振动工程学报, 2009, 22(1): 31-35.
Wang Cong-qing, Zhang Cheng-long. Hybrid vibration suppression for a free-floating flexible dual-arm space robot [J]. Journal of Vibration Engineering, 2009, 22(1): 31-35.
[8] 杜欣,蔡国平. 带有末端集中质量的双连杆柔性机械臂主动控制[J].应用力学学报, 2009, 26(4): 672-678.
DU Xin, CAI Guo-ping. Active control for two-link flexible manipulator with tip mass[J]. Chinese Journal of Applied Mechanics, 2009, 26(4): 672-678.
[9] 梁捷,陈力. 柔性空间机械臂末端运动及柔性振动的模糊自适应补偿控制[J]. 兵工学报, 2011 , 32(1): 45-57.
 LIANG Jie,CHEN Li. Fuzzy logic adaptive compensation control of end-effect montion and flexible vibration for space-based flexible manipulator[J]. Chinese Journal of Acta Armamentarii,2011 , 32(1): 45-57.
[10] Spong M W. Modeling and control of elastic joint robots[J]. Journal of Dynamics Systems,Measurement, and Control, 1987,109(4): 310 -319.
[11] Khoder M, Wilson W. Global Output Tracking Control of Flexible Joint Robots via Factorization of the Manipulator Mass Matrix. IEEE TRANSACTIONS ON ROBOTICS, 2009, 25(2): 428-437.
[12] Piotr S, Krzysztof K. A New Control Algorithm for Robot with Joint Flexibility. 16th IEEE International Conference on Control Applications, Part of IEEE Multi-conference on Systems and Control, Singapore, 1-3 October 2007: 238-243.
[13] 梁捷, 陈力. 关节柔性的漂浮基空间机器人基于奇异摄动法的轨迹跟踪非奇异模糊Terminal滑模控制及柔性振动抑制[J]. 振动与冲击, 2013, 32(23): 6-12.
     LIANG Jie, CHEN Li. Nonsingular fuzzy terminal sliding mode control based on singular suppression and elastic vibration suppressing of free-floating space robot with flexible joints[J]. Journal of Vibration and Shock, 2013, 32(23): 6-12.
[14] 章定国,周胜丰. 柔性杆柔性铰机器人动力学分析[J]. 应用数学和力学, 2006, 27(5): 615-623.
Zhang Ding-guo, Zhou Sheng-feng. Dynamic analysis of flexible-link and flexible-joint robots[J]. Applied Mathematics and Mechanics, 2006, 27(5): 615-623.
[15] Vakil M, Fotouhi R, Nikiforuk P N. A new method for dynamic modeling of flexible-link flexible-joint manipulators[J]. Journal of Vibration and Acoustics, 2012,134(1):14503-14513.
[16] Wang L X, Mendel J M. Fuzzy basis functions, universal approximation, and orthogonal least square learning [J]. IEEE Transaction on Neural Networks, 1992, 3(5): 807-814.
[17] Patel R V, Toda M, Sridhar B. Robustness of linear quadratic state feedback designs in the presence of system uncertainty [J]. IEEE Trans. Automat. Control, 1978, 21: 945-949.

PDF(1867 KB)

Accesses

Citation

Detail

段落导航
相关文章

/