普通混凝土HJC本构模型参数确定

任根茂1,吴 昊1,方 秦1,周建伟2,龚自明1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (18) : 9-16.

PDF(3084 KB)
PDF(3084 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (18) : 9-16.
论文

普通混凝土HJC本构模型参数确定

  • 任根茂1,吴  昊1,方  秦1,周建伟2,龚自明1
作者信息 +

Determinations of HJC constitutive model parameters for normal strength concrete

  • REN Gen-mao1, WU Hao1, FANG Qin1, ZHOU Jian-wei2, GONG Zi-ming1
Author information +
文章历史 +

摘要

Holmquist-Johnson-Cook(HJC)本构模型广泛应用于冲击爆炸作用下混凝土类材料的动态响应分析中。基于已有普通混凝土(单轴抗压强度≤60MPa)的准静态单轴压缩实验、三轴围压实验、一维SHPB实验和一维平面应变Hugoniot冲击压缩实验数据,确定了一组适用于不同强度普通混凝土材料HJC本构模型的强度参数、率效应参数和状态方程参数取值。基于上述确定参数值通过LS-DYNA有限元分析软件,对十五组普通混凝土(单轴抗压强度13.5~58.4MPa)靶体的刚性弹体侵彻贯穿实验进行了数值模拟。通过与实验中弹体侵彻深度,贯穿残余速度以及弹体过载和靶内径向应力时程结果对比,验证了本文所确定模型参数的准确性。

Abstract

Holmquist-Johnson-Cook (HJC) constitutive model has been widely used in analyzing the dynamic responses of concrete-like materials under shock and impact. Based on the available data from the existing quasi-static uniaxial compression test, the tri-axial compression test, the SHPB experiment as well as Hugoniot experiment, the strength parameters, the strain rate parameters, and the equation of state parameters of the HJC model for normal strength concrete (NSC, uniaxial compressive strength≤60MPa) were determined. Based on the above determined parameters, by using the finite element program LS-DYNA, total fifteen sets of projectile penetration and perforation tests on NSC (uniaxial compressive strength 13.5~58.4MPa) targets were numerically simulated, respectively. By comparisons with the experimental data of penetration depths, the residual velocities of the perforated projectiles, the deceleration-time and in-target radial stress-time histories, the verifications of the proposed parameters were validated.

关键词

普通混凝土 / 本构模型 / 数值模拟 / 侵彻 / 贯穿

Key words

normal strength concrete / constitutive model / numerical simulation / penetration / perforation

引用本文

导出引用
任根茂1,吴 昊1,方 秦1,周建伟2,龚自明1. 普通混凝土HJC本构模型参数确定[J]. 振动与冲击, 2016, 35(18): 9-16
REN Gen-mao1, WU Hao1, FANG Qin1, ZHOU Jian-wei2, GONG Zi-ming1. Determinations of HJC constitutive model parameters for normal strength concrete[J]. Journal of Vibration and Shock, 2016, 35(18): 9-16

参考文献

[1] Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjective to large strain, high strain rates, and high pressure [C]. The 14th International Symposium on Ballistic, Quebec: 1993, 591-600.
[2] 刘云飞, 申祖武, 晏石林, 等. 预应力钢筋混凝土安全壳侵彻数值模拟分析 [J]. 武汉理工大学学报, 2003, 25(10): 51-53.
LIU Yun-fei, SHEN Zu-wu, YAN Shi-lin, et al. Numercial simulation of projectile penetration into prestressed concrete containment [J]. Journal of Wuhan University of Technology, 2003, 25(10): 51-53.
[3] 纪冲, 龙源, 万文乾. 弹丸侵彻钢纤维混凝土数值模拟 [J]. 解放军理工大学学报, 2005, 6(5): 459-463.
JI Chong, LONG Yuan, WAN Wen-qian. Numerical simulation of projectile penetrating into steel fiber reinforced concrete [J]. Journal of PLA University of Science and Technology, 2005, 6(5): 459-463.
[4] Kuang Xin-xin, Gu Xiang-lin, Lin Feng, et al. Numerical simulation for responses of reinforced concrete slabs under blast loads [C]. The 2th International Symposium on Computational Structural Engineering, Shanghai, China: 2009, 691-698.
[5] Liu Yan, Huang Feng-lei, Ma Ai-e. Numerical simulations of oblique penetration into reinforced concrete targets [J]. Computers and Mathematics with Applications, 2011, 61: 2168-2171.
[6] 武海军, 黄风雷, 付跃升, 等. 钢筋混凝土中爆炸破坏效应数值模拟分析 [J]. 北京理工大学学报, 2007, 27(3): 200-204.
WU Hai-jun, HUANG Feng-lei, FU Yue-sheng, et al. Numerical simulation of reinforced concrete breakage under internal blast loading [J]. Transactions of Beijing Institute of Technology, 2007, 27(3): 200-204.
[7] 陈建林, 李旭东, 刘凯欣. 素混凝土本构模型参数的实验研究 [J]. 北京大学学报, 2008, 44(5): 689-694.
CHEN Jian-lin, LI Xu-dong, LIU Kai-xin. Experimental research on parameters of constitutive model for a cement mortar [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008, 44(5): 689-694.
[8] 熊益波, 胡永乐, 徐进, 等. 混凝土Johnson-Holmquist模型极限面参数确定 [J]. 兵工学报, 2010, 31(6): 746-751.
XIONG Yi-bo, HU Yong-le, XU Jin, et al. Determining failure surface parameters of the Johnson-Holmquist concrete constitutive model [J]. Journal of China Ordnance, 2010, 31(6): 746-751.
[9] 熊益波, 陈剑杰, 胡永乐. 混凝土Johnson-Holmquist本构模型灵敏参数的初步确定 [J]. 兵工学报, 2009, 30(增刊2): 145-148.
XIONG YI-bo, CHEN Jian-jie, HU Yong-le. Preliminary identification of sensitive parameters in Johnson-Holmquist concrete constitutive model [J]. Journal of China Ordnance, 2009, 30(2 suppl): 145-148.
[10] Meyer C S. Development of geomaterial parameters for numerical simulations using the Holmquist-Johnson-Cook constitutive model for concrete [R]. ARL-TR-5556, U.S. Army Research Laboratory. 2011.
[11] 普通混凝土配合比设计规程JGJ 55-2011 [S].北京: 中华人民共和国住房和城乡建设部, 2011.
Specification for mix proportion design of ordinary concrete JGJ 55-2011 [S]. Beijing: Ministry of Housing and Urban –Rural Construction of the People's Republic of China, 2011.
[12] 谢和平, 董毓利, 李世平. 不同围压下混凝土受压弹塑性损伤本构模型的研究 [J]. 煤炭学报, 1996, 21(3): 265-270.
XIE He-ping, DONG Yu-li, LI Shi-ping. Study of a constitutive model of elasto-plastic damage of concrete in axial compression test under different pressures [J]. Journal of China Coal Society, 1996, 21(3): 265-270.
[13] 熊益波. 基于Johnson-Holmquist模型的混凝土本构参数研究 [D]. 西安: 西北核技术研究所, 2009.
XIONG Yi-bo. Research on constitutive parameters of concrete based on the Johnson-Holmquist concrete model [D]. Xian: Northwest Institute Nuclear of Technology, 2009.
[14] Ansari F, Li Qing-bin. High-strength concrete subjected to triaxial compression [J]. ACI Materials Journal, 1998, 95(6): 747-755.
[15] 闫东明, 林皋, 徐平. 三向应力状态下混凝土动态强度和变形特性研究 [J]. 工程力学, 2007, 24(3): 58-64.
YAN Dong-ming, LIN Gao, XU Ping. Dynamic strength and deformation of concrete in triaxial stress states [J] Engineering Mechanics, 2007, 24(3): 58-64.
[16] 武建华, 于海洋, 李强, 等. 定围压比作用下混凝土轴向受压性能试验研究 [J]. 实验力学, 2007, 22(2): 142-148.
WU Jian-hua, YU Hai-yang, LI Qiang, et al. Experimental study on axial property for concrete with constant surrounding pressure ratio [J]. Journal of Experimental Mechanics, 2007, 22(2): 142-148.
[17] 侯正纲. 三轴应力状态下混凝土强度研究 [D]. 河北: 河北工业大学, 2006.
HOU Zheng-gang. Research on concrete strength under triaxial stresses [D]. Hebei: Hebei University of Technology, 2006.
[18] Grady D E. Dynamic decompression properties of concrete from Hugoniot states 3 to 25 GPa [R]. Sandia National Laboratories, USA: 1996.
[19] Grady D E. Shock equation of state properties of concrete [C]. International Conference on Structures under Shock and Impact. Udine, Italy: 1996.
[20] 帅晓蕾. 冲击荷载作用下混凝土动力性能试验研究及有限元分析 [D]. 湖南: 湖南大学, 2013.
SHUAI Xiao-lei. Mechanical properties experimental study and finite element analysis of concrete under the impact load [D]. Hunan: Hunan University, 2013.
[21] 董毓利, 谢和平, 赵鹏. 不同应变率下混凝土受压全过程的实验研究及其本构模型 [J]. 水利学报, 1997, (7): 72-77.
DONG Yu-li, XIE He-ping, ZHAO Peng. Experimental study and constitutive model on concrete under compression with different strain rate [J]. Journal of Hydraulic Engineering, 1997, (7): 72-77.
[22] Gary G, Bailly P. Behaviour of quasi-brittle material at high strain rate. Experiment and modelling [J]. European Journal of Mechanics, 1998, 17(3): 403-420.
[23] Schmidt M J. High pressure and high strain rate behavior of cementitious materials: experiments and elastic/ viscoplastic modeling [D]. Florida: University of Florida, 2003.
[24] ACI Committee 318, Building code requirements for reinforced concrete (ACI 318-89) and commentary (318R-89) [S]. American Concrete Institute, Farmington Hills, Mich., 1989.
[25] Frew D J, Hanchak S J, Green M L, et al. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489-497.
[26] Forrestal M J, Altman B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395-405.
[27] Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465-476.
[28] Forrestal M J, Frew D J, Hickerson J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479-497.
[29] Gran J K, Frew D J. In-target stress measurements from penetration experiments into concrete by ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1997, 19(8): 715-726.
[30] Hanchak S J, Forrestal M J, Young E R, et al. Perforation of concrete slabs with 48MPa (7ksi) and 140MPa (20ksi) unconfined compressive strength [J]. International Journal of Impact Engineering, 1992, 12(1): 1-7.
[31] Wu H, Fang Q, Peng Y, Gong Z M, et al. Hard projectile perforation on the monolithic and segmented RC panels with a rear steel liner [J]. International Journal of Impact Engineering, 2015, 76: 232-250.
[32] Cargile J D, Giltrud M E, Luk V K. Perforation of thin unreinforced concrete slabs [C]. The 6th International Symposium on Interaction of Nonnuclear Munitions with Structures, Panama City: 1993.

PDF(3084 KB)

Accesses

Citation

Detail

段落导航
相关文章

/