FGM中厚圆板轴对称自由振动的打靶法求解

李清禄1,张靖华1,李世荣2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (18) : 95-100.

PDF(1465 KB)
PDF(1465 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (18) : 95-100.
论文

FGM中厚圆板轴对称自由振动的打靶法求解

  • 李清禄1,张靖华1,李世荣2
作者信息 +

Numerical Solution of the Free vibration of functionally graded material moderately thick circular plates by shooting method

  • LI Qinglu1, ZHANG Jinghua1, LI Shirong2
Author information +
文章历史 +

摘要

研究了由陶瓷和金属两种材料组成的功能梯度材料(FGM)中厚圆板的自由振动问题。基于考虑横向剪切变形中厚板的几何方程、物理方程及平衡方程,建立了以中面转角和横向位移为基本未知量的功能梯度中厚圆板轴对称自由振动问题的控制方程;假定功能梯度中厚圆板的材料性质方向按照幂函数连续变化规律;采用打靶法数值求解所得非线性两点边值问题出,获得了多种边界下功能梯度中厚圆板的无量纲自然频率以及振动模态。讨论了材料梯度指数、板的厚度以及边界条件对自然频率的影响。

Abstract

The free vibration of FGM moderately thick circular plates was investigated.A FGM plate consisting of metal and ceramic was considered in the study.Based on the geometric equation, physical equation and equilibrium equation of thick plates, taking into account the transverse shearing deformation, the free vibration equation of axisymmetric FGM thick circular plates was derived in terms of the middle surface angles of rotation and lateral displacement.The material properties of the plate were assumed to vary continuously in the thickness direction according to a power law.By using the shooting method to solve the coupled ordinary differential equations with different boundary conditions, the natural frequencies of FGM thick circular plates were obtained numerically.The effects of material gradient property, thickness ratio and boundary conditions on the natural frequencies were discussed in detail.

关键词

功能梯度材料 / 中厚圆板 / 自由振动 / 频率 / 打靶法

Key words

functionally graded material(FGM) / moderately thick circular plates / free vibration / natural frequency / shooting method

引用本文

导出引用
李清禄1,张靖华1,李世荣2. FGM中厚圆板轴对称自由振动的打靶法求解[J]. 振动与冲击, 2016, 35(18): 95-100
LI Qinglu1, ZHANG Jinghua1, LI Shirong2. Numerical Solution of the Free vibration of functionally graded material moderately thick circular plates by shooting method[J]. Journal of Vibration and Shock, 2016, 35(18): 95-100

参考文献

[1] Koizumi M. The concept of FGM. Ceramic transitions. Functionally
Gradient Materials ,1993 ,34 :3-10.
[2] BHANGAL E R K,GANESAN N. Thermoelastic buckling and vibration
behavior of a functionally graded sandwich beam with const rained
viscoelastic core [J] . Journal of Sound and Vibration 2006 ,295 :294-316.
[3] Yang J, Shen H S. Non-linear analysis of functionally graded plates under transverse and in plane loads [J].International Journal of Non-linear Mechanics, 2003,38(4): 467~482.
[4] 仲政, 吴林志, 陈伟球. 功能梯度材料与结构的若干力学问题研究进展. 力学进展, 2010, 40(5): 528―541.
ZhONG Zheng, WU Lin-zhi, ChEN Wei-qiu. Progress in the study on mechanics problems of functionally graded materials and structures [J]. Advances in Mechanics, 2010, 40(5): 528―541.
[5] 侯宇, 何福保. 厚圆板的轴对称振动[J]. 中国计量学院学报, 1995,
suppl(10): 75―80.
HOU Yu, HE Fu-bao. Symmetrically Free Vibration of Thick Circular
Plates. Journal of China institute of metrology, 1995, suppl(10): 75-80.
[6] 龙述尧, 姜琛. 中厚板理论的适用范围和精确程度的研究[J]. 湖南大学学报(自然科学版), 2012, 39(1): 37-41.
LONG Shu-yao, JIANG Chen. Research on the Applicable Range and Accuracy of Moderately Thick Plate Theory. Thick Circular
Plates. Journal of Huan University(Natural Science), 2012, 39(1): 37-41.
[7] 徐旭, 何福保. 厚圆板轴对称振动的弹性力学解. 力学季刊, 2000,
21(1): 59-65.
XU Xu, HE Fu-bao. Elasticity Solution for Axisymmetric Vibration Problem of Thick Circular Plate[J]. Chinese Quarterly of Mechanics, 2000, 21(1): 59-65.
[8] 李世荣, 张靖华, 徐华. 功能梯度与均匀圆板弯曲解的线性转换关系. 力学学报, 2011, 43(5): 871―877 .
LI Shi-rong, ZHANG Jing-hua, XU Hua. Linear transformation between the bending solutions of functionally graded and homogenous circular plates[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 871―877.
[9]  Wang Y, Xu R Q, Ding H J. Free axisymmetric vibration of FGM circular plates[J]. Applied Mathematics and Mechanics, 2009, 30(9): 1077-1082.
[10 ]  Kermani I D, Ghayour M, Mirdamadi H R. Free vibration analysis of
multi-directional functionally graded circular and annular plates[J]. Journal of Mechanical and Technology, 2012, 26(11): 3399-3410.
[11] 张弛,校金友, 张硕. 用无网格法分析功能梯度材料圆板的自由振动[J]. 科学技术与工程, 2014, 14(13): 145-150 .
ZhANG Chi, XIAO Jin-you, ZHANG Shuo. Study on free vibration FGM plate by meshless method[J]. Science Technology and Engineering, 2014, 14(13): 145-150.
[12]  Malekzadeh P,  Golbahar Haghighi M R, Atashi M M. Free vibration analysis of elastically supported functionally graded annular plates subjected to thermal environment[J]. Meccanica, 2011, 46:893–913.
[13]  Shen H S, Wang Z X. Assessment of Voigt and Mori–Tanaka models for vibration analysis of functionally graded plates [J]. Composite Structures, 2012, 94: 2197–2208.
[14]  Pradhan K K, Chakraverty S. Free vibration of functionally graded thin elliptic plates with various edge supports[J]. Structural Engineering and Mechanics, 2015, 53(2): 337-354.
[15] LI S R , TENG Z C ,ZHOU Y H. Free vibration of heated Euler-Bernoulli beams with thermal post-buckling deformations[J] . Journal of Thermal Stresses , 2004, 27: 843-856.
[16]  Irie T, Yamada G, Takagi K. Natural frequencies of thick annular plates. Journal of Applied of Mechanics, 1982, 49(3) :633-638.

PDF(1465 KB)

Accesses

Citation

Detail

段落导航
相关文章

/