淹没磨料射流涡旋特性大涡模拟及研究

张欣玮1,2,卢义玉1,2,周哲1,2,汤积仁1,2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (19) : 1-6.

PDF(1602 KB)
PDF(1602 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (19) : 1-6.
论文

淹没磨料射流涡旋特性大涡模拟及研究

  • 张欣玮1,2,卢义玉1,2,周哲1,2,汤积仁1,2
作者信息 +

Large Eddy Simulation and Study on Vortex Characteristics of Submerged Abrasive Jet

  • ZHANG Xin-wei ,2,LU Yi-yu 1,2,ZHOU Zhe1,2, TANG Ji-Ren1,2
Author information +
文章历史 +

摘要

基于涡运动理论,采用固-液两相大涡模拟方法模拟了淹没磨料射流的涡量场,分析了涡旋扩散机理与卷吸特性以及磨料随涡运动在射流中的混合分布规律。流场剪切层中涡旋呈对称分布,沿轴线方向涡量呈指数衰减,衰减到最小值两侧涡旋混合成紊流混合区,而等速核内涡量几乎为零。相比于纯水射流,磨料的存在使得射流涡运动减弱,涡旋扩散角减小约50%,等速核增长约30%,减少了能量耗散。磨料在射流束内部时,受涡旋影响,趋向分布于高应变率、低涡量区,在涡旋下游侧磨料浓度最高。同时模拟研究了磨料参数对涡量场的影响规律,结果表明:磨料参数基本不影响扩散角(14.1-15.1°)、等速核长度,卷吸能力随磨料浓度、粒径、密度的升高均呈现小幅度地降低,磨料密度对其影响程度最大,磨料粒径的影响最不明显。

Abstract

Based on the theory of vortex motion, the vorticity field of submerged abrasive jet had been simulated using two-phase large eddy simulation method. The mechanism of eddy diffusion and entrainment had been analyzed, and abrasive distribution with vortex movement had been acquired. The vortex distribution of the shear layer is symmetrical. Vorticity on both sides of the vortex mixing presents exponential attenuation to the minimum value, mixing into turbulent mixing zone. The potential core is irrotational everywhere. Compared with pure water jet, the existence of abrasive makes vortex motion abate, eddy diffusion angle decrease by about 50% and potential core grow by about 30%. The abrasive affected by vortex tends to be distributed in the area of high strain rate and low vorticity. Abrasive concentrates in the downstream side of vortex. It was also studied by simulation that the influence of the abrasive parameters on vorticity field. The results show that the diffusion angle(14.1-15.1°) and potential core basically remain unchanged with the abrasive parameters changing; The entrainment ability decreases slightly with the abrasive concentration、partical size and density.

关键词

淹没射流 / 磨料 / 涡旋 / 大涡模拟

Key words

Submerged Water Jet / Abrasive Jet / Vortex / Large Eddy Simulation;

引用本文

导出引用
张欣玮1,2,卢义玉1,2,周哲1,2,汤积仁1,2. 淹没磨料射流涡旋特性大涡模拟及研究[J]. 振动与冲击, 2016, 35(19): 1-6
ZHANG Xin-wei,2,LU Yi-yu 1,2,ZHOU Zhe1,2, TANG Ji-Ren1,2. Large Eddy Simulation and Study on Vortex Characteristics of Submerged Abrasive Jet[J]. Journal of Vibration and Shock, 2016, 35(19): 1-6

参考文献

[1] 雷鹏,倪红坚,马琳,王瑞和,王建军. 自吸环空流体式自激振荡脉冲粒子射流调制机制分析[J]. 中国石油大学学报(自然科学版), 2014, 03: 80-86.
LEI Peng, NI Hong-jian, MA Lin, WANG Rui-he, WANG Jian-jun. Mechanism analysis for self-oscillation pulse particle jet based on automatic fluid sucking from annulus[J]. Journal of China University of petroleum, 2014, 03: 80-86.
[2] 赵健,徐依吉,邢雪阳,石超,李庆陆,王瑞英. 脆性岩石粒子冲击理论模型与实验[J]. 中国矿业大学学报, 2014, 06: 1108-1112.
ZHAO Jian, XU Yi-ji, XING Xue-yang, SHI Chao, LI Qing-lu, WANG Rui-ying. A theoretical model and experiment of brittle rock impacted by particles[J]. Journal of China University of Mining & Technology, 2014, 06: 1108-1112.
[3] 黄中伟,李根生,史怀忠,牛继磊,宋先知,邵尚奇. 围压下磨料射流喷射套管及灰岩实验研究[J]. 中国石油大学学报(自然科学版), 2014, 06: 85-89.
HUANG Zhong-wei, LI Gen-sheng, SHI Huai-zhong, NIU Ji-lei, SONG Xian-zhi, SHAO Shang-qi. Experimental study on abrasive water jet blasting casing and limestone under ambient pressures[J]. Journal of China University of petroleum, 2014, 06: 85-89.
[4] Mlynarczuk, M; Skiba, M; Sitek, L; Hlavacek, P; Kozusnikova, A. The research into the quality of rock surfaces obtained by abrasive water jet cutting[J]. Archives of Mining Science, 2014, 59(04): 925-940.
[5] Gokhan Aydin. Recycling of abrasives in abrasive water jet cuttingwith different types of granite[J]. Arabian Journal Geosciences, 2014, 7(10): 4425-4435.
[6] Stoic. A, Duspara. M, Kosec. B, Stoic. M, Samardzic. I. The influence of mixing water and abrasives on the quality of machined surface[J]. Metalurgija, 2014, 53(02): 239-242.
[7] R.Chein, J.N.Chung. Effects of vortex pairing on particle dispersion in turbulent shear flows [J].International Journal of Multiphase Flow, 2007, 13 (6):785-802.
[8] Dorian Liepmann. The role of streamwise vorticity in the near-field entrainment of round jets[J]. Journal of Fluid Mech, 2012, 245 :643-668.
[9] Novara,Matteo,Scarano. Performances of motion tracking enhanced Tomo-PIV on turbulent shear flows [J]. Experiments in Fluids, April 2012 ,v 52, n 4, p 1027-1041.
[10] 曲海,李根生,黄中伟,李宪文,赵文,卜向前,王晓东. 水力喷射分段压裂密封机理[J]. 石油学报, 2011,03: 514-517.
QU Hai, LI Gen-sheng, HUANG Zhong-wei, LI Xian-wen, ZHAO Wen, PU Xiang-qian, WANG Xiao-dong. Sealing mechanism of the hydrajet stepwise fracturing[J]. Acta Petrolei Sinica, 2011, 03: 514-517.
[11] F. Xiao, M. Dianat, J.J. McGuirk. LES of turbulent liquid jet primary breakup in turbulent coaxial air flow[J]. International Journal of Multiphase Flow, 2014, 60: 103-118.
[12] 周卫东,李罗鹏,孔垂显,王静双. 淹没条件下长圆喷嘴流场数值模拟[J]. 中国石油大学学报(自然科学版), 2013,01: 80-84+90.
ZHOU Wei-dong, LI Luo-peng, KONG Chui-xian, WANG Jing-shuang. Numerical simulation of flow field of nozzle with elliptical exit under submerged condition[J]. Journal of China University of petroleum, 2013,01:80-84+90.
[13] 姜玉颖,龚烈航,徐新林,王有成. 磨料水射流喷嘴内流场数值模拟[J]. 兵工学报,2014,04:461-467.
JIANG Yu-ying, GONG Lie-hang, XU Xin-lin, WANG You-cheng. Numerical simulation of flow field in abrasive water jet nozzles[J]. Acta Armamentarii, 2014, 04: 461-467.
[14] 李晓红, 卢义玉, 向文英. 水射流理论及在矿业工程中的应用[M]. 重庆: 重庆大学出版社, 2007.
[15] 白静,方红卫,何国建. 非淹没丁坝绕流的三维大涡模拟研究[J]. 力学学报,2013,02:151-157.
BAI Jing, FANG Hong-wei, HE Guo-jian. Study of non- submerged groin turbulence flow in a shallow openchannel by les [J].Chinese Journal of Theoretical and Applied Mechanics,2013,02:151-157.
[16] 王小兵,刘扬,崔海清,韩洪升. 垂直管中定常螺旋流涡量特性的PIV试验研究[J]. 流体机械,2012,02:5-9.
WANG Xiao-bing, LIU Yang, CUI Hai-qing, HAN Hong-sheng. Experimental Study on the fluid flow characteristics in the hydrocyclone on the PIV[J]. Fluid Mechinery, 2012 , 02:5-9.

PDF(1602 KB)

Accesses

Citation

Detail

段落导航
相关文章

/