基于多通道模态分析的输电线路舞动特征识别

万成1,2 严波1,3 吕中宾4,5 魏建林4,5 李清4,5

振动与冲击 ›› 2016, Vol. 35 ›› Issue (19) : 132-137.

PDF(2987 KB)
PDF(2987 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (19) : 132-137.
论文

基于多通道模态分析的输电线路舞动特征识别

  • 万成1,2  严波1,3  吕中宾4,5  魏建林4,5   李清4,5
作者信息 +

Identification of Galloping Characteristics of Transmission Line Based on Multichannel Mode Analysis

  • WAN Cheng1,YAN Bo1,2 ,LÜ Zhong-bin3,4,WEI Jian-lin3,4,LI Qing3,4
Author information +
文章历史 +

摘要

采用随机减量法(RDM)从实测输电线路舞动位移信号中提取非受迫振动信号,将其作为特征系统实现算法(ERA)的输入,实现对舞动频率、振型和阻尼比的识别。利用Matlab编制相应的识别软件,通过梁的振动试验验证了方法和软件的正确性。针对真型试验输电线路六分裂线路段位移时程多通道实测结果,采用获得的参数识别方法和软件,识别得到该线路舞动事件的频率、振动形态以及线路的阻尼比。该方法和软件为实际线路舞动特征参数的识别提供了重要手段。

Abstract

With the random decrement method (RDM), the non-forced vibration responses are extracted from the galloping responses of a transmission line, and the galloping frequencies, vibration modes and damping ratios are identified by the eigensystem realization algorithm (ERA) with input of the free vibration responses. The identification software is coded with Matlab, which is proved by the test of beam vibration. Further, by means of the developed software, the frequencies, vibration modes and damping of the real six bundle conductor lines are identified. The method and software provide an important means for the identification of galloping characteristics of real transmission lines.

关键词

输电线路 / 舞动 / 参数识别 / 舞动特征

Key words

 transmission line / galloping / parameter identification / galloping characteristics

引用本文

导出引用
万成1,2 严波1,3 吕中宾4,5 魏建林4,5 李清4,5. 基于多通道模态分析的输电线路舞动特征识别[J]. 振动与冲击, 2016, 35(19): 132-137
WAN Cheng1,YAN Bo1,2,Lü Zhong-bin3,4,WEI Jian-lin3,4,LI Qing3,4. Identification of Galloping Characteristics of Transmission Line Based on Multichannel Mode Analysis[J]. Journal of Vibration and Shock, 2016, 35(19): 132-137

参考文献

[1] Hartog D. Transmission line vibration due to sleet[J]. AIEE Trans, 1932, 1074-1086.
[2] Nigol O, Clarke G J. Conductor galloping and control based on torsional mechanism[C]. New York, 1974 IEEE Power Eng Soc Conf, Paper no C74016-2.
[3] Jones K F. Coupled vertical and horizontal galloping[J]. J Eng Mech, 1992,18(1): 92-107.
[4] Zhang Q, Popplewell N, Shah A H. Galloping of Bundle Conductor [J]. Sound and Vibration, 2000, 234(1):115-134.
[5] Desai Y M , Yu P . Finite element modeling of transmission line galloping [J]. Computers & Structures,1995,57(3):407-420.
[6] Hu Jing, Yan Bo, Zhou Song, et al. Numerical Investigation on Galloping of Iced Quad Bundle Conductors[J]. IEEE Transactions on Power Delivery,2012,27(2):784-792.
[7] Yan Bo, Liu Xiao-hui, Lv Xin,et al. Investigation into galloping characteristics of iced quad bundle conductors[J]. Journal of Vibration and Control, published online 30 June 2014, DOI: 10.1177/1077546314538479
[8] Chabart O, Lilien J L. Galloping of electrical lines in wind tunnel facilities [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998,74(76):967-976.
[9] 李万平. 覆冰导线群的动态气动力特性[J]. 空气动力学学报, 2000,18(4):413-420.
   Li Wan-ping. Dyanamic aerodynamic characteristics of the galloping of bundled iced power transmission lines[J]. Acta Aerodynamica Sinica, 2000, 18(4):413-420.
[10] Yukino T,  Fujii K, Hayase I. Galloping phenomena of large bundle conductors observed on the full-scale test line[C]. Proceeding of Cable Dynamics, Liege, Belgium,1995, 557-563.
[11] Dyke P V, Laneville A. Galloping of a single conductor covered with a D-section on a high-voltage overhead test line[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96:1141-1151.
[12] Gurung C B, Yamaguchi H,Yukino T. Identification of large amplitude wind-induced vibration of ice-accreted transmission lines based on field observed data[J]. Engineering Structure,2002,24:179-188.
[13] Gurung C B, Yamaguchi H, Yukino T. Identification and characterization of galloping of Tsuruga test line based on multi-channel modal analysis of field data[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91: 903-924.
[14] Anjo K, Yamasaki S, Matsubayashi Y. An experimental study of bundle conductor galloping on the Kasatori-Yama Test line of bulk power transmission[R], CIGRE Report, 1974, 22-04.
[15] Juang J, Pappa R S. An eigensystem realization algorithm for modal parameter identification and model reduction[J]. AIAA, J Guid Control Dynam,1985, 8(4) :620-627.
[16] Longman R W, Juang J N. Recursive form of the eigensystem realization algorithm for
    system identification[J]. AIAA, J Guid Control Dynam,1989,12(5):647-652.
[17] Chiang D Y, Cheng M S. Modal parameter identification from ambient response[J].AIAA Journal ,1999,37(4):513-515.
[18] Ibrahim S R. Random decrement technique for modal identification of structures[J].J Spacecrafts Rockets ,1977,14 (11): 696-700.
[19] 陈德成, 姜节胜. 随机减量技术的方法与理论[J]. 振动与冲击, 1984, (4), 31-40.
    Chen De-cheng, Jiang Jie-sheng. Method and theory of random decrement technique[J]. Journal of Vibration and Shock. 1984, (4), 31-40.
 [20] Oleg V Shiryayev, Joseph C Slater. Application of the random decrement technique to nonlinear dynamic systems[C]. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials conference. Newport, Rhode Island, 2006.
[21] Jeary A P. Establishing nonlinear damping characteristics of structures from non-stationary response time-histories[J]. The Structural Engineer, 1992, 70(4):61-66.
[22] Kareem A, Gurley K. Damping in structures: its evaluation and treatment of uncertainty[J]. J of Wind Eng Int Aerodyn, 1996, 59:131-157.
[23] 李远林,伍晓榕.非线性横摇阻尼的试验确定[J].华南理工大学学报(自然科学版). 2002,30(2):79-82.
    Li Yuan-lin, Wu Xiao-rong. experimental determination of nonlinear roll damping: a technique for data processing[J]. Journal of South China University of Technology(Natural Science Edition). 2002,30(2):79-82.
[24] 黄方林, 何旭辉, 陈政清, 王修勇. 随机减量法在斜拉桥拉索模态参数识别中的应用[J].机械强度, 2002, 24(3):331-334.
    Huang Fang-lin, He Xu-hui, Chen Zheng-qing, Wang Xiu-yong. Application of random decrement technique to modal parameter identification of cables for a cable-stayed bridge[J], Journal of Mechanical Strength, 2002, 24(3):331-334.
[25] 方宁.斜拉桥超长拉索振动行为测试与研究[D]. 同济大学, 2008.
    Fang Ning. The long cable vibration behavior testing and research[D]. Tongji University,      2008.
[26] Asmusscn J C. Modal analysis based on the random decrement technique application to civil engineering structures. Ph.D. thesis, University of Aalborg, Department of Building Technology and Structural Engineering. Sohngaardholmsvej 57, 9000 Aalborg, Denmark, August 1997.

PDF(2987 KB)

Accesses

Citation

Detail

段落导航
相关文章

/