在以往的POGO分析中,蓄压器的模型并未考虑膜盒机械刚度。但试验表明,蓄压器金属膜盒具有一定机械刚度,尤其是在受到较大压缩时,机械刚度会很大。较大的机械刚度会降低蓄压器的总柔度,影响蓄压器对POGO的抑制效果。本文基于气液接触面的力平衡条件和流量连续方程,推导了考虑膜盒机械刚度的蓄压器动力学模型。并将新模型应用于某型号火箭的POGO稳定分析,分析了蓄压器膜盒刚度对POGO稳定性的影响。仿真结果表明,考虑膜盒机械刚度的蓄压器动力学模型比传统模型有更高的计算精度。因此在工程实际中考虑膜盒机械刚度的POGO稳定性分析结果更加准确可靠。
Abstract
The stiffness of accumulator is not considered in accumulator model of POGO analysis in currently. But the results of test show that the accumulator has the mechanical stiffness when the accumulator has been compressed, especially, the stiffness will be large, when the accumulator has been compressed largely. In this case, the accumulator compliance is decrease. It can affect the prevention effect of POGO vibration. In this paper, based on flow continuity equation and force equilibrium equation of Gas-Liquid, the new dynamic model of accumulator has been given considering the mechanical stiffness of accumulator. And the model has been applied in the simulation of POGO vibration, it can be shown that the results of the new model can be compared with the original model. It can be shown that the results of the new model can not only give the precise stability analysis of POGO vibration but also the pictures of the process are much more close to the real processes. Thus, the stability analysis of the POGO vibration has better precise results in engineering, considering the mechanical Stiffness of accumulator.
关键词
POGO /
蓄压器 /
膜盒刚度 /
动力学模型
{{custom_keyword}} /
Key words
POGO /
Accumulator /
Stiffness of accumulator /
Dynamic model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Oppenheim B W, Rubin S. Advanced pogo stability analysis for liquid rockets [J]. Journal of Spacecraft and Rockets, 1993, 30(3): 360-373
[2] 王其政,黄怀德 姚德源.结构耦合动力学[M]. 北京:宇航出版社,1997,
[3] Rubin S. Prevention of coupled structure-propulsion instability [R]. NASA SP-8055, 1970.
[4] COPPOLINO R F, Lock M H, Rubin K S. Space Shuttle Pogo Studies [J], Aerospace Corp., AEROSPACE REPORT NO. AII-78(7474)-1.
[5] Curis E. Larsen, NASA experience with Pogo in human spaceflight vehicles[J], RTO-MP-AVT-152,2008.
[6] 黄怀德. 液体火箭的POGO振动研究 [J]. 振动工程学报, 1987,1(1):5-13.
HUANG Huai-de. Research into POGO vibration of liquid rockets [J]. Journal of Vibration Engineering, 1987, 1(1):5-13.
[7] 廖少英. POGO蓄压器变频降幅特性分析[J]. 上海航天, 2002, 1(1): 32-35.
LIAO Shao-ying. Characteristic Analysis of the Frequency Conversion and Amplitude Reduction for the POGO Accumulator [J]. AEROSPACE SHANGHAI, 2002,1(1):32-35.
[8] 任辉, 任革学, 荣克林等, 液体火箭Pogo振动蓄压器非线性仿真研究[J],强度与环境, 2006,33(3):1-6.
REN Hui, REN Ge-xue, RONG Ke-lin, MA Dao-yuan, ZHANG Jian-hua. A nonlinear model on the simulation of pogo vibrations in liquid rockets[J]. STRUCTURE&ENVIRONMENT ENGINEERING, 2006, 33(3):1-6.
[9] 严海, 方勃, 黄文虎, 液体火箭Pogo振动研究与参数分析[J],导弹与航提运载技术, 2009(6):35-40.
Yan Hai, Fang Bo, Huang Wen-hu. Research and Parameter Analysis of POGO Vibration in Liquid Rocket[J].MISSILES AND SPACE VEHICLES, 2009(6):35-40.
[10] 严海. 液体火箭的纵向耦合振动(Pogo)研究[D]. 哈尔滨工业大学, 2009.
Yan Hai. Reseach of POGO Vibration in liquid rockets[D]. Haebin Institute of Technology, 2009.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}